

L. % Wad AN

Read Me First...

Special Applied Engineering (Beta)16 Bit Card Soﬂware Developer's Package

The version of the 16 Bit Card that is being sent to software developers is "only" capable of addressing up
to 8 Meg of memory. The version that will be shipped to customers will be capable of addressing up to 16
Meg of memory, the full capability of the 65816 processor. This Beta version of the 16 Bit Card is provided
with only one ribbon cable to connect it to a RamWorks Il memory expansion card. Ordinarilly it would have
another shorter ribbon cable to connect the 16 Bit Card (P2) to a 2 Meg. RamWorks memory expander
piggy-back card. This "2 Meg." cable is not required when using the 512K version of the RamWorks
memory expander piggy-back card.

Applied Engineering Technical Support

Applied Engineering has a staff of technicians dedicated to answering specific questions about Applied
Engineering products and software. If your question cannot be resolved by the technician, he will refer
the question to the appropriate engineer. The technical support representatives are available Monday
through Friday, between the hours of 9 AM to 5 PM (Central). The technical support telephone number is
(214)241-6069. Please have as much information as possible available about your problem if you call.

Soldered MMU chip on the //e main logic board

Important!: Some (very few) Apple //e's were manufactured with\th'e MMU chip soldered in. If your //e does not
have a socket for the MMU, the MMU will have to be desoldered and a socket installed. This is very tricky and should

only done by a professional with the proper tools. Apple Computer, Inc has assured us that //e's are now assembled
with socketed MMU chips.

Main Logic Board\

END VIEW of SOLDERED MMU

SOCKET

Main Logi¢ Board ——

END VIEW of SOCKETED MMU
|

————

Installation

Installing the 16 Bit Ciard
* Turn the //e power switch to the OFF position, but leave the computer plugged in.
* Remove the /e top qu'.‘ !
* Make sure the power-on indicator light inside the computer is OFF. (See lllustration 1.)

[Hustration 1:

Power-On _-
Indicator

— CPU

Power —T]

Supply | — MMU

Auxiliary —
Slot

* lIfinstalled, remove the RamWorks Il card from the /e auxiliary slot.

* Remove the 74LS273 chip from the RamWorks Il socket marked "CPU." (Refer to
lllustration 2.) Carefully set the RamWorks Il aside and store the 745273 in a safe place.

Installation

Ilfustration 2:

%

RAMWORKS I

CPU

hN

[0ANAMRANNRAARAANRRARRAN

Remove 74L.5273
from this socket

o | o

* Locate the CPU chip and the MMU chip on the /e main logic board. (Refer to lllustration 1.)

* Remove the MMU chip from the //e main logic board. Use a small flatblade screwdriver to gently
lift alternate ends of the chip until it is free from its socket. Carefully set the MMU chip aside.

®* Remove the CPU chip in the same manner. The //e's CPU chip is not required with the 16 Bit
Card installed. Store it in a safe place.

® Verify that all pins on the 16 Bit Card CPU and MMU header connectors are straight. (Refer to
lllustration 3.) ‘

Installation

lllustration 3:
Native (16 bit) mode RamWorks Il MMU /CPU
indicator L.E.D. Connector Headers

/ ™

Future
Expansion
Connector

gscaie

o
<

Socket for 2 Meg.
Memo[y %x/;iaLnder
2 Meg. Memory Expander 16L8 P.A.LL.
ribbon cable connector (optional) ~ MMU Socket

(optional)

* Install the MMU chip on the 16 Bit Card, as shown in Illustratlon 4. Be sure the notch is oriented

as indictated in the illustration.

lllustration 4: J

Ribbon cable to
CPU Connector
on RamWorks 1l

Insert MMU into
this socket

Notch

P WP N O j

Installation

* Plug one of the ribbon cable header connectors (both ends are the same) into the 16 Bit Card
socket marked "P1" exactly as shown in Hlustration 4.

® Invert the 16 Bit Card (solder side up; component side down) and position it above the CPU
and MMU sockets on the //e main logic board . The red LED on the 16 Bit Card should be
pointing toward the keyboard.
|]
* Using the viewport to élign the header pins on the 16 Bit Card with the socket holes on the /e
main logic board, install the 16 Bit Card into the CPU and MMU sockets. Press gently but firmly
until the card is securely seated.

lMustration 5: I

16 Bit
Card ~——~—

v

Viewport ~—__||

]

RamWorks || =——]

Ribbon
Cable

S | J)

* Position the keyboard end of the RamWorks Il card ‘near the installed 16 Bit Card. Install the
free end of the 16 Bit Card ribbon cable to the RamWorks Il socket marked "CPU." Verify that

all header connector pins are fully seated in the socket and that the cable is installed as shown
in lllustration 6.

Installation

Illustration 6:

o RAMWORKS I
CPU ' .

10A0ANNANANANANDANANY

Ribbon cable from
P1 of 16 Bit Card.

* Install the RamWorks Il card into the //e's auxiliary slot.

* Replace the //e's top lid. Installation is complete.

* Boot the disk labeled "/ 16 Bit Developer's Disk" and run the program "TEST816."

If the computer will not boot or fails the test program, check to see that all chips, cables, and
connectors are securely seated in their sockets. Also check for bent pins on the MMU chip and
on the ribbon cable and CPU / MMU headers. ‘

- H . e

e SRR SRR

Installation

For developers with the 2 Meg. RamWorks memory expansion piggy-back card, a special fibbon
cable is required to connect the 16 Bit Card to the 2 Meg. expander card. This cable is available
from Applied Engineering.

To install this cable you must first remove the PAL16L8 chip from the 2 Meg. expander and install it
on the 16 Bit Card. This chip is to be inserted in the socket NEXT to socket "P2." One end of the
ribbon cable is then connected to socket "P2" with the cable trailing toward the keyboard when
installed. The other end of this cable is to be connected to the empty 16L8 socket on the 2 Meg.
expander. The cable should Also trail toward the keyboard end of the card when installed.

Iltustration 7:

I

00000000

00000000000000000000000

6 2 MEG EXPANDER

Install
ribbon cable Remove
connector from P2

PAL 16L8
of 16 Bit Card i

Operation and Architecture

|
The 16 Bit Card will allow you to address up to 16 Meg linearly, using the 65816 processor's native mode
of operation. In 65C02 emulation mode, the memory on the Rarmworks Il card will look and act exactly like
the memory on a Ramworks Il without the 16 Bit Card installed, with one exception: with the 16 Bit Card
installed, hitting CONTROL-RESET will always put you back in BANK 0; on a Ramworks Il without the 16 Bit
Card, CONTROL-RESET has no |effyact on the bank register. l |

If you have a 1 Meg Ramworks II; you will get banks 00 thru OF, whether you are in 65C02 emulation mode
or in the 65816 native mode. If you have a 1 Meg Ramworks I with a 1/2 Meg (512 K) piggy back, you will
get banks 00-17, whether you are in 65C02 emulation mode or in 65815 native mode.

If you have worked with the Applied Engineering 2 Meg piggy back board before, you probably know of its
unique memory mapping scheme. Banks are arranged in the order 00 through OF (on Ramworks 1l), then
from 10-17,30-37,50-57,70-77 (on the 2 Meg piggy back). This is.done to maintain compatibility with other
piggy back cards from Applied Engineering, and with the original Ramworks. In 65C02 emulation mode,
the banks retain this partially non linear mapping; however, in 65816 native mode, the banks become
linearized, from 00 thru 2F.

In an Apple lle equipped with a Ramworks 1l but not a 16 Bit'Card, the memory on the Ramworks Il is
accessed as alternate banks of auxiliary memory. The 84K of memory on the Apple lle motherboard is
accessed when the MMU's softswitches are set one way (MAIN memory) and the memory on the
Ramworks Il card is accessed when the MMU's softswitches are set the other way (AUXILIARY memory).
One unique bank of 64K of memory is chosen from the available banks on the Ramworks |l card by the
BANK SELECT REGISTER, which is in the lle's memory map at location $C073. Bank 0 on the Ramworks |i
card is where the video generator circuits in the Apple lle look for the 80 column video and Double High
Resolution graphics information. No matter what 64K bank the BANK SELECT REGISTER is pointing to,
all video access goes to bank 0. (This feature is patented by Applied Engineering.)

All hardware locations, including the MMU's softswitches, are:located in the $C000 to $CFFF range of
memory (hereafter referred to as $CXXX), which is called the HARDWARE PAGE. With a Ramworks I
installed, access to $CXXX range of memory IN ANY BANK will'access the hardware page. In other words,
the $CXXX range of ANY BANK is mapped into the HARDWARE PAGE.

When the 16 Bit Card is installed and running in the 65C02 emulation mode, the softswitches still work
exactly as they do without the 16 Bit Card. However, when the processor is in the 65816 native mode
accesses to the hardware page can only be accomplished from 65816 BANK 0. Any bank other than
65816 BANK 0 will not allow you to access the hardware page. If you are in a 65816 bank other than BANK
0, and you access the $CXXX range, you will be accessing RAM MEMORY, NOT the hardware page
When you are in 65816 BANK 0, the Apple lle softswitches, which are in the hardware page, will allow you
to flip back and forth between main memory or auxilllary memory. If you are in a bank other than BANK 0,
the softswitches will have no effect. That is, even if you go into 65816 BANK 0 and flip MMU softswitches
so that you are looking at AUX memory, when you go inté a 65816 bank other than BANK 0, the
softswitches will have no effect. This is because there is no auxiliary memory associated with 65816 banks
other than BANK 0. In 65816 native mode, BANK 0 main memory is the 64K on the Apple lle
motherboard, and BANK 0 auxiliary memory is the first 64K on'the Ramworks card. This allows you to use
the softswitches to flip between main memory and aux memory (as long as you are in BANK 0); this makes
using the 80 column video and double high resolution graphics easier. If the 65816 is in a bank other than
BANK 0, it will map into a corresponding bank on the Ramworksll or a piggy back card.

Operation and Architecture

The softswitches that control access to the LANGUAGE CARD area of memory that overlays the
motherboard ROM space can only be accessed from 65816 BANK 0. Further, they only have an effect in
65816 BANK 0. Because the 65816 looks for its interrupt vectors in BANK 0 at locations $FFF4 through
$FFFF, you must use the language card RAM space to store these vectors.

One turther note on using softswitches: The 65816 can have 8-bit wide registers or 18-bit wide registers.
In the 65C02 emulation mode all registers (except the PC) are 8-bits wide, but in the native mode you can
set the width of the X and Y réglsters with the X bit in the Pro[cessor Status Register (P). If X=0 the X and Y
registers are 16-bits wide, and iff X=1 then X and Y are 8-bits wide. The M bit in the P register controls the
width of the Accumulator. If M= 0 then the Accumulator is 16-bits wide, and if M=1 then the accumulator is
8-bits wide. You should only access the hardware page it M=1 and X=1. This will prevent unwanted
problems because of writes to two successive addresses.

16 Bit Memory Maps

65816 Native mode 65C02 Emulation Mode
65816 Bank 0 65816 Bank 0
(Main) (Aux.)
//e motherboard RW Bank 0 /fe Main Memory RW Bank 0
65816 Bank 1
RW Bank 1 RW Bank 1
65816 Bank 2
RW Bank 2 ' RW Bank 2
65816 Bank 3
RW Bank 3 RW Bank 3
65816 Bank 4 !
RW Bank 4 RW Bank 4
[] ®
@ @
4] @
65816 Bank 2F
RW Bank 2F ’ RW Bank 2F

65C816 Data Sheet

The following pages have been excerpted from the W65C816 Data Sheet
and are reprinted with permission from Western Design Center, Inc.

| |
|
W65C816 Processor Programnlling Model

r ::‘j BITS_ _] 8BiTS YT .
I" Data Bank Reg. X Register Hi (X] “X Register Low
| (oBR) (XH) e (L) D

I" Data Bank Reg. Y Register Hi (\'() Y, Register | Low

L__{BBR_ _ (YH) T
T Stack Register Hi & Stack Reg. Low
'L___E(i_____ (SH) ‘(?’w,_,,(su S
|| =es02
- Registers
Program Bank Reg.
(PBR) (

,r__ - ;0_ ~ T T Direct Reg. Hi ,I_Direct Reg. Low

oH O oLy

Status Register Coding
STATUS REG. (P) o

[T8] rE——--EMULATION 1= 6502
‘N VIM X D 0=NATIVE

|
L LCAF'!F%Y 1=TRUE
ZERO 1=RESULT ZERO
IRQ DISABLE 1=DISABLE

DECIMAL MODE
INDEX REG. SELECT

MEMORY SELECT
— OVER FLOW
—NEGATIVE

10

1=TRUE
1=8BIT.0=16BIT
I 1=8BIT0=168BIT
1=TRUE
1=NEGATIVE

65C816 Data Sheet

Functional Description

The WB5C802 offers the design engineer the opportunity to utilize both
exisling soltware programs and hardwaro conligurations, while also
avhiteyting e addel givantdges af inceass isgister langihs and faster
execution limes. Tha W65C802's "ease of use” design and implemenia-
tion leatures provide the designer with increased llexibility and reduced
implementation costs. In the Emulation miode, the WE5CB02 not only
offars soltware compalibility, bul is also hardware (pin-to-pin) com-
patible with 6502 designs...plus it provides |he advantages ol 10-bil
internal operation in 6502-compatible applications. The WB5C802 is an
excellent direct replacement microprocessor for 6502 designs.

The WE5C816 provides the design engineer with upward inobility and
software compatibility in applications where a 16-bit system configura-
tion is desired. The W65C816's 16-bit hardware configuration, cou pled
with current software allows a wide selection of system applications. In
the Emulation mode, the W65C816 offers many advantages, including
full software compatibility with 6502 coding. In addition, the WE5C816's
powerful instruction set and addressing modes make it an excellent
choice for new 16-bit designs.

Internal organization of the W65C802 and WB5CB16 can be divided into
two parts: 1) The Register Section, and 2} The Control Section. Instruc-
tions (or opcodes) obtained from program memory are executed by
implementing a series of data transfers within the Register Section.
Signals that cause data transfers to be executed are generated within the
Control Section. Both the W65C802 and the WB5C816 have a 16-bit
internal architecture with an 8-bit external data bus.

Instruction Register and Decode

An opcode entefs the processor on the Data Bus, and is latched into the
Instruction Register during the instruction fetch cycle. This instruction
is then decoded, along with timing and interrupt signals, to generate the
various Instruction Register control signais.

Timing Control Unit (TCU) :

The Timing Control Unit keeps track of each instruction cycle asitis ex-
ecuted. The TCU is set to zero each time an instruction fetch is executed,
and is advanced at the beginning of each cycle for as many cycles asis
required to complete the instruction. Each data transfer between regis-
ters depends upon decoding the contents of both the Instruction Regis-
ter and the Timing Control Unit.

Arithmetic and Logic Unit (ALU)

All arithmetic and logic operations take place within the 16-bit ALU. In
addition to data operations, the ALU also calculates the effective address
for relative and indexed addressing modes. The result of adata operation
is stored in either memory or an internal register. Carry, Negative, Over-
flow and Zero flags may be updated following the ALU data operation.

Internal Registers (Refer to Programming Model)

Accumulators (A, B, C)

The Accumulator is a general purpose register which stores one of the
operands, or the result of most arithmetic and logical operations. In the
Native mode (E=0), when the Accumulator Select Bit (M) equals zero,
the Accumulator is established as 16 bits wide (A + B = C). When the
Accumulator Select Bit (M) equals one, the Accumulator is 8 bits wide
(A). In this case, the upper 8 bits (B) may be used for temporary storage
in conjunction with the Exchange Accumulator (XBA) instruction.
Data Bank Reglster (DBR)

During modes of operation, the 8-bit Data Bank Register holds the de-
fauit bank address for memory transfers. The 24-bitaddress is composed
of the 16-bit instruction effective address and the 8-bit Data Bank ad-

'

dress. The register value is multiplexed with the data value and is present
on the Data/Address lines during the first half of a data transfer memory
cyrle for the WASC816. The Data Bank Register s initialized to zero dur-

Ing Resel.

Direct (D)

The 16-bit Direct Register provides an address offset for all instructions
using dfu‘ect addressing. The elfective bank zero address is formed by
adding the 8-bit instruction operand address to the Direct Register The
Direct Register is initialized to zero during Reset.

Index (X and Y)

There are two Index Registers (X and Y) which may be used as general
purpose registers or to provide an index value for calculation of the ef-
fective address. When executing an instruction with indexed addressing,
the microprocessor fetches the opcode and the base address, and then
modifies the address by adding the Index Register contents to the ad-
dress prior to performing the desired operation. Pre-indexing or post-
indexing of indirect addresses may be selected. In the Native mode (E=0),
both Index Registers are 16 bits wide (providing the Index Select Bit (X)
equals zero). Ifthe Index Select Bit (X) equals one, both registers will be
8 bits wide, and the high byte is forced to zero.

Processor Status (P)

The 8-bit Processor Status Register contains status flags and mode select
bits. The Carry (C), Negative (N), Overflow (V), and Zero (Z) status flags
serve to report the status of most ALU operations. These status flags are
tested by use of Gonditional Branch instructions. The Decimal (D), IRQ
Disable (1}, Memory/Accumulator (M), and Index (X) bits are used as
mode select flags. These flags are set by the program to change micro-
processor operations.

The Emulation (E) select and the Break (B) flags are accessible only
through the Processor Status Register. The Emulation mode select flag
is seleéted by the Exchange Carry and Emulation Bits (XCE) instruction.
Table '1, W65C802 and W65C816 Mode Comparison, illustrates the
features of the Native (E=0) and Emulation (E=1) modes. The M and X
flags are always equal to one in the Emulation mode. When an interrupt
occurs during the Emutation mode, the Break flag is written to stack
memory as bit 4 of the Processor Status Register.

Program Bank Register (PBR)

The 8-bit Program Bank Register holds the bank address for all instruc-
tion fetches. The 24-bit address consists of the 16-bit instruction effective
address and the 8-bit Program Bank address. The register value is multi-
plexed with the data value and presented on the Data/Address lines during
the first half of a program memory read cycle. The Program Bank Regis-
ter is initialized to zero during Reset. The PHK instruction pushes the
PBR register onto the Stack.

Program Counter (PC)

The 16-bit Program Counter Register provides the addresses which are
used to step the microprocessor through sequential program instruc-
tions. The register isincremented each time an instruction or operand is
fetched from program memory.

Stack Pointer (S)

The Stack Pointer is a 16-bit register which is used to indicate the next
available location in the stack memory area. It serves as the effective ad-
dressin stack addressing modes as well as subroutine and interrupt pro-
cessing. The Stack Pointer allows simple implementation of nested sub-
routines and multiple-level interrupts. During the Emulation mode, the
Stack Pointer high-order byte (SH) is always equal to one. The bank ad-
dress for all stack operations is Bank zero.

11,

65C816 Data Sheet

AO-AT <:

AB-A15 ¢

D0-D7 (802)
DO/BA0-D7/BAT (815)

ADDRESS BUFFER (LOW)

BE (816) |

ADDRESS BUFFER (HIGH)

INTERNAL ADDRESS BUS (16 BITS)

DATA BUS/BANK ADDRESS BUFFER

IiE

INDEX X
(16 BITS)

INDEX Y

(1§8ITS)

STACK POINTER
(S) (16 BITS)

=

ALU
(16 BITS)

]

g 1t i

TRANSFER
SWITCHES

INTERNAL SPECIAL BUS (18 BITS)

ACCUMULATOR
(€) (16 BITS)
(A) (8 BITS)
(8) (8 BITS)

CNONCOTY

PROG. COUNTER
(PC) (16 BITS)

DIRECT (D)
{16,BITS)

T
PROG. BANK (PBR)
(8 BITS)

DATA BANK (DBR)
(8 BITS)

DATA
LATCH/
PREDECODE

[BMIAIAIA

PREDECODE

BE (816)

1} lt—— ABORAT (816)
L [}
|4 s—— TRG
INTERRUPT
LoGic . wwT
i
] | lea— RES - —
- (\
TIMING | o o
CONT.
” v
[=
m e —
] — 0
b= o w w CLOCK
@ S Sa g GEN- |——a=
o = oZ o ERATOR
1(w Wy gy
'i w od ox ——a
a 2 Zz 3%
-t o oF op
4 @ [| vl 4
z L 0o oS
© « 3 oF
w xZ «
- = £S5 =
r4 ! ©u wn o
= 8 | Z z —=
H i)
1 -4
—
]
1 ——
e
SYSTEM
CONT. :
PROCESSOR =
STATUS (P)
{8 BITS) | —
[
INSTRUCTION REGISTER T
(8 BITS)

Block Diagram — Internal Architecture

12

Vss

RDY

@2 (IN)
#1(OUT) (802)

#2 (OUT) (802

R/W

SYNC (802)
VPA (816)
VDA (816)
ML (816)
VP (816)

E (816)

M/X (816)

65C816 Data Sheet

W65C816 Compatibility Issues

wW65C816/802

W65C02

NMOS 6502

1.

S (Stack)

Always page 1 (E = 1), 8 bits
16 bits when (E = 0).

Always page 1, 8 bits

Always page 1, 8 bits

2.

X (X Index Register)

Indexed page zero always in
page 0 (E=1),
Cross page (E = 0).

Alw‘ays page 0

Always page 0

3. Y (Y Index Register)

Indexed page zero always in
page 0 (E=1),
Cross page (E =0).

Alwhys page 0

Always page 0

4.

A (Accumulator)

8 bits (M = 1), 16 bits (M = 0)

8 bits

8 bits

5.

P (Flag Registor)

N, V, and Z flags valid in
decimal mode.
D = 0 after reset or interrupt.

N, V, and Z flags valid in
decimal mode.
D = 0 after reset and

N, V, and Z flags invalid
in decimal mode.
D = unknown after reset.

Bank Address

RTI PBR not pulied (E = 1)
PBR pushed (E = 0)
RTI PBR pulled (E = 0)

Not available

\

interrupt. D not modified after interrupt.
6. Timing
A. ABS, X ASL, LSR, ROL, 7 cycles 6 cycles 7 cycles
ROR With No Page Crossing
B. Jump Indirect
Operand = XXFF 5 cycles 6 cycles 5 cycles and invalid page
' crossing
C. Branch Across Page 4 cycles (E=1) 4 cycles 4 cycles
3 cycles (E=0)
D. Decimal Mode No additional cycle Add 1 cycle No additional cycle
7. BRK Vector OOFFFE,F (E=1) BRK bit =0 FFFE,F BRK bit = 0 on stack FFFEF BRK bit = 0 on stack
on stack if IRQ, NMI, ABORT. if IRQ, NML. if IRQ, NML.
O0FFE6, 7 (E=0) X=X on ’
Stack always.
8. Interrupt or Break PBR not pushed (E = 1) Not available

. Memory Lock (ML)

ML = 0 during Read, Modify and

Write cycles.

ML = 0 during Modify and Write.

Not available

. Indexed Across Page

Boundary (d),y; a,x; a,y

Extra read of invalid address.
{Note 1)

Extra read of last instruction
fetch.

Extra read of invalid address.

Signatures 00-7F user defined
Signatures 80-FF reserved

11. RDY Pulled During Write Ignored (E = 1) for W65C802 only. | Processor stops Ignored
Cycle. Processor stops (E = 0).
12. WAI and STP Instructions. Available Available Not available
13. Unused OP Codes One reserved OP Code specified No operation Unknown and some "hang
as WDM will be used in future up” processor.
systems. The W65C816 performs
a no-operation.
14. Bank Address Handling PBR = 00 after reset or interrupts. Not available Not available
15. A/W During Read-Modify- E=1, R/W =0 during Modify and R/W =0 only during Write cycle R/W =0 during Modify and
Write Instructions Write cycles. Write cycles.
E = 0, R/W = 0 only during
Write cycle.
16. Pin7 W65C802 = SYNC. SYNC SYNC
W65C816 = VPA
17. COP instruction Available Not available

Not available

Note 1. See Caveat section for additional information.

13

65C816 Data Sheet

W65C802 and W65C816
Microprocessor Addressing Modes

The W65C816 is capable of directly addressing 16 MBytes of memory.
This address space has special significance within certain addressing
modes, as fo'tows: |

Reset and Interrupt Vectors

The Reset and Interrupt vectors use the majority of tl?e fixed addresses
between OOFFEQ and O0FFFF, P

Stack

The Stack may use memory from 000000 to 00FFFF. The effective ad-
dress of Stack and Stack Relative addressing modes will always be within
this range.

Direct

The Direct addressing modes are usually used to store memory registers
and pointers. The effective address generated by Direct, Direct,X and
Direct,Y addressing modes is always in Bank 0 (000000-00FFFF).

Program Address Space

The Program Bank register is not affected by the Relative, Relative Long,
Absolute, Absolute Indirect, and Absolute Indexed Indirect addressing
modes or by incrementing the Program Counter from FFFF. The only
instructions that affect the Program Bank register are: RTi, RTL, JML,
JSL, and JMP Absolute Long. Program code may exceed 64K bytes al-
though code segments may not span bank boundaries.

Data Address Space

The data address space is contiguous throughout the 16 MByte address
space. Words, arrays, records, or any data structures may span 64 KByte
bank boundaries with no compromise in code efficiency. The following
addressing modes generate 24-bit effective addresses:
Direct Indexed Indirect (d,x) J
Direct Indirect Indexed (d),y

:Direct Indirect (d)

Direct indirect Long [d]

Direct Indirect Long Indexed [d],y

Absolute a

Absolute a,x

Absolute a,y

Absolute Long al

Absolute Long Indexed al,x

Stack Relative Indirect Indexed (d,s),y

The following addressing mode desc-iptions provide additional detail as
to how effective addresses are calculated.

Twenty-four addressing modes are available for use with the W65C802
and W65C816 microprocessors. The “long" addressing modes may be
used with the W65C802; however, the high byte of the address is not
available to the hardware. Detailed descriptions of the 24 addressing
modes are as follows:

1. Immediate Addressing—# "
The operand is the second byte {second and third bytes when in the
16-bit mode) of the instruction.

2. Absolute—a

With Absolute addressing the second and third bytes of the instruc-
tion form the low-order 16 bits of the effective address. The Data
Bank Register contains the high-order 8 bits of the operand address.

Instruction: I opcode I addrl [addrh |
Operand
Address: I DBR | addrh | addri |

3. Absolute Long—al

The second, third, and fourth byte of the instruction form the 24-bit
effective address.

Instruction: opcode | addrl l addrh l baddr]
Operand |

Address: baddr I addrh | addrl |

4. Direct—d

The second byte of the instruction is added to the Direct Register
(D) to form the effective address. An additional cycle is required

when the Direct Register is not page aligned (DL not equal 0). The
Bank registe:r"is always 0.

Inslruction:ﬂi opcode | of!set_]

| ‘ | Direct Register |

Operand l
Address:

offset |

00 l effective address |

5. Accumulator—A

This form of addressing always uses a single byte instruction. The
operand is the Accumulator.

6. Implied—I
Implied addressing uses a single byte instruction. The operand is
implicitly defined by the instruction.

7. Direct Indirect Indexed—(d),y

This address mode is often referred to as Indirect,Y. The second
byte of the instruction is added to the Direct Register (D). The 16-bit
contents of this memory location is then combined with the Data
Bank register to form a 24-bit base address. The Y Index Register is
added to the base address to form the effective address.

Inslrucllon:[opcode r offset |

Direct Register |

+ | offset |
| 00 | direct address |
then:
[00 I (direct address) |
+«| oemr |
| base address |
+ | | YReg |
Operand ‘l |
Address; effective address

8. Direct Indirect Long Indexed—[d],y

With this addressing mode, the 24-bit base address is pointed to by
the sum of the second byte of the instruction and the Direct
Register. The effective address is this 24-bit base address plus the Y
Index Register.

Instruction: | opcode | offset |
| Direct Register ‘
+ | oftset |
I 00 | direct address I
then:
| (direct address) I
* _ | | YReg |
Operand I |
Address: effective address

9. Direct Indexed Indirect—(d,x)

This address mode is often referred to as Indirect,X. The second
byte of the instruction is added to the sum of the Direct Register
and the X Index Register. The result points to the low-order 16 bits
of the effective address. The Data Bank Register contains the high-
order 8 bits of the effective address.

14

10.

1.

12.

13.

65C816 Data Sheet

Instruction: opcode l offset]
| Direct Register |
+ l oftset l
| direct address ‘
+ l ':])kReg i
‘ 00 i address l
then: |
‘ 00 i (address)]
| oer |
Operand | |
Address: elfective address

Direct Indexed With X—d,x

The second byte of the instruction is added to the sum of the Direct
Register and the X Index Register to form the 16-bit effective
address. The operand is always in Bank 0.

Instruction: | opcode l offset }
| Direct Register I
+ I offset '
| direct address |
+| | xReg |
Operand
Address: I 00 | effective address l

Direct Indexed With Y—d,y

The second byte of the instruction is added to the sum of the Direct
Register and the Y tndex Register to form the 16-bit effective
address. The operand is always in Bank 0.

Instruction: opcode l oifset]
| Direct Register l
+ | oftset |
l direct address !
* ‘ | YReg I
Operand | : l
Address: 00 effective address

Absolute Indexed With X—a,x

The second and third bytes of the instruction are added to the
X Index Register to form the low-order 16 bits of the effective ad-
dress. The Data Bank Register contains the high-order 8 bits of the
effective address.

Instruction: | opcode [addrl l addrh J

| oer | adah | adan |

+| | XReg |

Operand l I
Address: effective address

Absolute Long Indexed With X—al,x

The second, third and fourth bytes of the instruction form a 24-bit
base address. The effective address is the sum of this 24-bit address
and the X Index Register.

14.

15.

16.

17.

18.

15

instruction: | opcode l addri | addrh | baddr
| badar | addrh | adan |
+| | xReg |
Operand | 1
Addréss: effective address

1

Absolute Indexed With Y—a,y

The second and third bytes of the instruction are added to the
Y Index Register to form the low-order 16 bits of the etfective ad-
dress. The Data Bank Register contains the high-order 8 bits of the
etfective address.

instruction: [opcode | addrl [adorh |

I DBR l addrh I addrl |

1 | Yreg |

Operand | |
Address: effective address

Program Counter Relative—r

This address mode, referred to as Relative Addressing, is used only
with the Branch instructions. If the condition being tested is met,
the second byte of the instruction is added to the Program Counter,
which has been updated to point to the opcode of the next instruc-
tion. The offset is a signed 8-bit quantity in the range from -128 to
127. The Program Bank Register is not affected.

Program Counter Relative Long—rl

This address mode, referred to as Relative Long Addressing, is used
only with the Unconditional Branch Long instruction (BRL) and the
Push Effective Relative instruction (PER). The second and third
bytes of the instruction are added to the Program Counter, which
has been updated to point to the opcode of the next instruction. With
the branch instruction, the Program Counter is loaded with the
result. With the Push Effective Relative instruction, the result is
stored on the stack. The offset is asigned 16-bitquantity in the range
from -32768 to 32767. The Program Bank Register is not affected.

Absolute Indirect—(a)

The second and third bytes of the instruction form an address to a
pointer in Bank 0. The Program Counter is loaded with the firstand
second bytes at this pointer. With the Jump Long (JML) instruction,
the Program Bank Register is loaded with the third byte of the
pointer.

Instructlon:[opcode l addrl [addrh |

Indirect Address = l 00 I addrh I
New PC = (indirect address)

with JML:
Neéw PC = (indirect address)
New PBR = (indirect address +2)

Direct Indirect—(d)

The second byte of the instruction is added to the Direct Register to
form a pointer to the low-order 16 bits of the effective address. The
Data Bank Register contains the high-order 8 bits of the effective
address.

addrl

Instruction: [opcode | offset |
| Direct Register |
+ | oftset]
| 00 | direct address |
then:
| 00 | (direct address) |
+| oer |
Operand
Address: | effective address |

19.

20.

65C816 Data Sheet

Direct Indirect Long—[d]

The second byte of the instruction is added to the Direct Register to
form a pointer to the 24-bit effective address.

Imlrucllon:l opcode [offset l

| Direct Register |

. | ottsdt |
| 00 | direct address"? ' I
then: L
Operand
Address: 1 (direct address) |
Absolute Indexed Indlrect—(a,x)

The second and third bytes of the instruction are added to the
X Index Register to form a 16-bit pointer in Bank 0. The contents of
this pointer are loaded in the Program Counter. The Program Bank
Register is not changed.

Instruction: [opcode | addrl [addrh |
I addrh | addrl ‘
| | XReg |
PBR | address ‘ |
then:
PC = (address)
21. Stack—s

Stack addressing refers to all instructions that push or pull data
from the stack, such as Push, Pull, Jump to Subroutine, Return from
Subroutine, Interrupts, and Return from Interrupt. The bank ad-
dress is always 0. Interrupt Vectors are always fetched from Bank 0.

22. Stack Relative—d,s .

The low-order 16 bits of the effective address is ‘formed from the
sum of the second byte of the instruction and the Stack Pointer. The
high-order 8 bits of the effective address is always zero. The relative
offset is an unsigned 8-bit quantity in the range of 0 to 255.

Instruction: opcode] offset]
| Stack Pointer i
+ l offset |
Operand
Address: 00 I effective address |

23.

24,

16

Stack Reliative Indirect Indexed—(d,s),y

The second byte of the instruction is added to the Stack Pointer to
forma pointq’r to the low-order 16-bit base address in Bank 0. The
Data Bank Register contains the high-order 8 bits of the base ad-
dress. The effective address is the sum of the 24-bit base address
and the Y Index Register.

Imlruc!lon:il_opcode | offset |

Stack Pointer !

offset |

| + |
| 00 ‘ S + offset |
then:
I S + offset l
+ l DBR |
| base address |
. l i Y Reg |
Operand
Address: | effective address |

Block Source Bank, Destination Bank—xyc

This addres‘%ing mode is used by the Block Move instructions. The
second byte'of the instruction contains the high-order 8 bits of the
destination'address. The Y index Register contains the low-order 16
bits of the destination address. The third byte of the instruction
contains thelhigh-order 8 bits of the source address. The X Index
Register contains the low-order 16 bits of the source address. The
C Accumulator contains one less than the number of bytes to move.
The second byte of the block move instructions is also loaded into
the Data Bank Register.

)
Instructlon: [opcode | dstbnk | srcbnk

dstbonk — DBR
Source :
Address: | scrbnk | X Reg l
Desllnallon'
Address: | DBR I Y Reg |

Increment (MVN) or decrement (MVP) X and Y.
Decrement C (if greater than zero), then PC+3 — PC.

65C816 Data Sheet

ADC
AND
ASL
BCC
BCS
BEQ
BIT
BMI

BPL
BRA
BRK
BRL
BVC
BVS
CLC
CLD
CLlI
CcLv
CMP
COP
CPX
CPY
DEC
DEX
DEY
EOR
INC
INX
INY
JML
JMP
JSL
JSR
LDA
LDX
LDY
LSR
MVN
MVP

* NOP

ORA
PEA

PEI

PER

W65C802 and W65C816 Instruction Set—Alphabetical Sequence

Add Memory to Accumulator with Carry
"AND" Memory with Accumulator

Shift One Bit Left, Memory or Accumulator
Branch on Carry Clear (Pc = 0)

Branch on Carry Set (Pc = 1)

Branch if Equal (Pz = 1)

Bit Test !

Branch if Result Minus (PN = 1)

Branch if Not Equal (Pz = 0)

Branch if Resuit Plus (P~ = 0)

Branch Always

Force Break

Branch Always Long

Branch on Overflow Clear (Pv = 0)

Branch on Overflow Set (Pv = 1)

Clear Carry Flag

Clear Decimal Mode

Clear Interrupt Disable Bit

Ciear Overflow Flag :

Compare Memory and Accumulator
Coprocessor

Compare Memory and index X

Compare Memory and Index Y .

Decrement Memory or Accumulator by One
Decrement Iindex X by One

Decrement Index Y by One

“Exclusive OR" Memory with Accumulator
Increment Memory or Accumulator by One
Increment Index X by One '

Increment Index Y by One

Jump Long

Jump to New Location)

Jump Subroutine Long :

Jump to New Location Saving Return Address
Load Accumulator with Memory

Load Index X with Memory

Load Index Y with Memory

Shift One Bit Right (Memory or Accumulator)
Block Move Negative

Block Move Positive

No Operation

“"QOR" Memory with Accumulator

Push Effective Absolute Address on Stack (or Push Immediate
Data on Stack)

Push Effective Indirect Address on Stack (or Push Direct
Data on Stack)

Push Effective Program Counter Relative Address on Stack

For alternate mnemonics, see Table 7.

PHA
PHB
PHD
PHK
PHP|
PHX
PHY:
PLA
PLB
PLD
PLP
PLX
PLY
REP
ROL
ROR
RTI
RTL
RTS
SBC
SEC
SED!
SEI
SEP
STA!
STP
STX
STY
sTZ
TAX
TAY
TCD
TCS
TDC
TRB
TSB
TSC
TSX
TXA
TXS
XY
TYA
TYX
WAl
WOM
XBA
XCE

Push Accumulator on Stack

Push Data Bank Register on Stack

Push Direct Register on Stack

Push Program Bank Register on Stack

Push Processor Status on Stack

Push Index X on Stack

Push index Y on Stack

Pull Accumulator from Stack

Pull Data Bank Register from Stack

Pull Direct Register from Stack

Pull Processor Status from Stack

Pull Index X from Stack

Pull index Y form Stack

Reset Status Bits

Rotate One Bit Left (Memory or Accumulator)
Rotate One Bit Right (Memory or Accumulator)
Return from interrupt

Return from Subroutine Long

Return from Subroutine

Subtract Memory from Accumulator with Borrow
Set Carry Flag

Set Decimal Mode

Set Interrupt Disable Status

Set Processor Status Bite

Store Accumulator in Memory

Stop the Clock

Store Index X in Memory

Store Index Y in Memory

Store Zero in Memory

Transfer Accumulator to Index X

Transfer Accumulator to Index Y

Transfer C Accumulator to Direct Register
Transter C Accumulator to Stack Pointer Register
Transfer Direct Register to C Accumulator
Test and Reset Bit

Test and Set Bit i
Transfer Stack Pointer Register to C Accumulator
Transfer Stack Pointer Register to Index X
Transfer Index X to Accumulator

Transfer index X to Stack Pointer Register
Transter Index X to Index Y

Transfer Index Y to Accumulator

Transter Index Y to index X

Wait for Interrupt

Reserved for Future Use

Exchange B and A Accumulator

Exchange Carry and Emulation Bits

Vector Locations

E=1

OOFFFE,F —IRQ/BRK Hardware/Software
OOFFFC,D—RESET Hardware
OOFFFA,B —NMI Hardware
OOFFF8,9 —ABORT Hardware
OOFFF6,7 —(Reserved)

OOFFF4,5 —COP Software

E=0

OOFFEE,F —IRQ Hardware
OOFFEC,D—{Reserved)
OOFFEA,B—NMI Hardware
OOFFES8,9 —ABORT Hardware
OOFFES6,7 —BRK Software
OOFFE4,5 —COP Software

The VP output is low during the two cycles used for vector location access.
When an interrupt is executed, D = 0 and | = 1 in Status Register P.

17

65C816 Data Sheet

Opcode Matrix

M M
s s
D LSD D
0 1 2 3 5 6 7 8 9 A B c D E
o |BRKS|ORA(dx) | COPs | ORAds | TSBd | ORAG | ASLd | ORA[d] |PHPs| ORA# | ASLAIPHDs| TSBa | ORAa | ASLa [ORAal| |
28| 28 2%g | 2%4 2%s |l2 3 |25 2%6 |1 3| 2 2|1 2|1*4| 3% | 34 | 36| a¥s
1| BPLr |ORA (d).y |ORA ()|ORA (dis).y| TRBd |ORAdx|ASL dx| ORA[d)y | CLCi |ORA aly| INC A TGSi| TRBa |ORAax|ASLax|ORAalY
22| 25 2%s 2%7 | 2%°5 [2.4 | 28 2%6 |1 2] 3 4| 1%°2[1*2| 3%¢ 34| 37| 4*s
,|JSRa [AND (dx) | JSLal | ANDds | BITd ANDd |ROLd | AND[d] | PLPs | AND 4f ROLAIPLDs| BiTa | AND2 | ROLa| ANDal| ,
36| 26 4%g 2%4 23|23 |25 2%6 |1 4] 22 |1 2|1%s5| 3 4 34| 36| 4%s
3| BMIT [AND (d)y [ANG (d)|AND (d;s).y | BIT d.x |AND d.x [ROL dix| AND,[dl.y | SEC i |ANDay|DEC ATSC || BITax [ANDax|ROL ax|ANDalx 4
2 2 25 2°s5 2%7 2% | 2 4 | 2 8 2%g 12| 3 4| 1% |1*%2| 3° 34| 37| a*s
4| RTls [EOR(dx) [WDM | EORds [MVPxyc| EORd |LSAd | EOR[d] |PHAS| EOR# |LSRAIPHKS| JMPa | EORa | LSRa | EORal| ,
17| 26 2%2 | 2%4 3*7 |23 |25 2%6 |1 3|22 |1 2|1*3]| a3 34| 36| 4%s
s [BVCr | EOR (d)y |EOR (d) |EOR (d.s).y |MVN xyc|EOR dx |LSR dx | EOR,[d].y | CUI | [EORay|PHYs|TCDi| JMPal [EORax|LSRax|EORalX .
2 2 2 5 2°%s 2%y 3%7 | 2 4 | 256 2%6 12| 3 4| 1%3|1%2| a*4 34 37| 4%s
¢ |RTSs |ADC (dx) [PERs | ADCdis | STZd | ADCd [RORd | ADC(d] |PLAs | ADC # |RORA|RTLs| JMP(a) [ADCa | RORa | ADCal 6
16 2 6 a*g 2%4 2°3 | 23 |25 2%g 1 4|22 |1t2|1*%s| 35 34| 36| 4%s
7|BYSr |ADC (d)y [ADG (o) |ADC (d.5).y| STZ dix |ADC d.x [ROR d,x| ADC[dLy | SEIi |ADC ay| PLY s |TDC i |[UMP (a.x) | ADC a.x |ROR a,x| ADG al,{ 7
2 2 2 5 2°%s 2%7 2%4 | 24 | 28 2%6 |1 2| 3 a|1%4|[1*2| 3°%s 34 | 37| 4*s
g |SRAT [STA(dx) | BRLH | STAds | STVd | STAd | STXd | STA[d] |DEYi| BIT# | TXAi|PHBs| STYa | STAa | STxa | STAal| .
2% 2 6 3%3 2%, 23|23 |23 2%s 1 2| 2% |1 2|1%3| 3 4 34| 34| a¥s
o [BCCr [STA(d)y |STA() | STA ds)y | STY dx |STA D [STX diy | STAJd]y | TYAi [STAay| TXSi|TXYi| STZa |STAax [STZax|STAalx| o
2 2 2 6 2%s 2%7 2 4 | 24|24 2%g 12|35]|12|1%2]| 3%4 35 | 3%°s5 | a%*s
A[LDY¥|LDA(dX) | LDX# | LDAds | LDYd [LDAd | LDXd | LDA[d] [TAYi | LDA# | TAXi|PLBs| LDYa | LDAa | LDXa | LDAal| ,
2 2 26 2 2 2%y 23 |23 |23 2%g 12|22 |12[1%4 3 4 34 | 34| 4%s
g [BCS T [LDA (@)y |LDA(d)[LDA (dis)y | LOY dx |LDAdx [LDXdy [LDA[dly [CLVi |LDAay| TSXi [TYXi [LDYax |LDAax|LDXay|LDAaLX g
2 2 25 2°%s 2%7 24 | 24|24 2%s 12341 2|1%2]| 3 4 34 | 34| a*s
G|CPY# [CMP(@x) | REP# [CMPds | CPYd [CMPd |DEC | CMPId) | INYi | CMP# | DEXi[WAIi| CPYa | CMPa | DECa | CMPal| .
2 2 2 6 2%3 2%y 23 |'23 |25 2%g 12221 2(1°3] 3 4 34 36| 4%s
p |BNEr [CMP (d)y [CMP (d)|CMP (d:s)y| PEls [CMPdxDEC dix| CMP [dly [CLD i [CMP ay| PHX s |STPi | JML (a) | CMP ax |DEC a,x|CMP ai b
22| 25 2%5 | 2%7 2% | 2.4 [26 2%6 |1 2| 3 4;[1%°3]|1°3| 3%s | 34 | 3 7| a*s5
g |CPX#|SBC(dx) [SEP# | SBCds | CPXd [SBCd | INCd | SBG(d] | INXi | SBC# | NOPi[xBAi| CPXa | SBCa | INCa | SBCal £
2 2 2 6 2%3 2%4 23 |23 |25 2%g 12122 |1t2[1*3]| 3 4 34 |36 | 4%s
F [BEQr | SBC (d).y |SBG(d)|SBC (dis)y| PEAs SBCdx |INCdx | SBC[dly | SEDi [SBCay| PLXs |XCE i [JSR fax) | SBCax |INCax[sSBCalx .
2 2 25 2°%s 2%7 3%5 | 24 |28 2% |1 2| 3 4 [1%4]|1%2]| 3%*s 34 | 37| a¥*s
0 1 2 3 4 5 6 7 8 9 A B c D E F
symbol | addressing mode symbol | addressing mode
immediate [d] direct indirect long
A accumulator [d}y direct indirect long indexed
r program counter relative a absolute
rl program counter relative long ax absolute indexed (with x)
i implied ay absolute indexed (with y)
s stack al absoiute long
d direct al,x absolute long indexed
d,x direct indexed (with x} ds stack relative
dy direct indexed (with y) (d.s)y stack relative indirect indexed
(d}) direct indirect (a) absolute indirect
(d.x) direct indexed indirect (a.x) absolute indexed indirect
(d).y direct indirect indexed xyc block move
Op Code Matrix Legend
INSTRUCTION ADDRESSING
MNEMONIC * = New W65C816/802 Opcodes MODE
e = New W65C02 Opcodes
BASE Blank = NMOS 6502 Opcodes BASE
NO. BYTES NO. CYCLES

18

