The
ProDev(® DDT8 v1.6 & DDT16 v1.7
(Devel opnment & Debuggi ng Tool)

User Manual

ProDev, Inc.

by:

Chuck Kelly

Christ is the Answer!

CUSTOMER SATI SFACTI ON

Shoul d you di scover any defects in either this manual or the
ProDev DDT card, ProDev, at our option, will replace the
docunentation or provide revisions and wll replace or repair the
ProDev DDT at no charge to you during the 180-day period after
you purchased the product.

LI M TATI ON ON WARRANTI ES AND LI ABI LI TY

Even t hough ProDev has tested this product for proper operation,
neither ProDev, its dealers, representatives or agents make any
warranty or representation, either expressed or inplied, with
respect to this docunentation or the acconpanyi ng hardware and/ or
firmvare. ProDev disclainms any and all liabilities for direct,
indirect, incidental, or consequential damages as a result of
using this manual or ANY ProDev hardware and/or firmnare. ProDev
shall have no liability for the loss of any prograns or data,

i ncludi ng the cost of recovering these prograns or data or for
any other | osses which may occur as a result of using this
product. This warranty is void in the cases of m suse or damages
resulting fromsources other than the operation of this product.
Sone states do not allowthe Iimtation of inplied warranties or
liability for consequential damages, so the above limtations may
not apply to you.

COPYRI GHT

This manual, the firmvare (ProDev DDT object code in ROM and
programmabl e integrated circuit chips) and the |ayout of the

el ectronic circuit board are copyrighted by ProDev, wth al
rights reserved. Ower's of the DDT are hereby given perm ssion
to copy and distribute the ProDev DDT manual, source code and
obj ect code as long as our copyright notice is included.

Copyright 1985, 1986, 1987, 1988, 1989, 1990, 1993 By:
ProDev, Incorporated
LaSalle, M

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

| NTRCDUCTI ON

CONTENTS

What is the ProDev DDT
Synbol s Used in This Manual

Install ati on

GETTI NG STARTED

The Main Display Screen

Traci ng Code

Setting Break Points

SETUP COVIVANDS

Mor ?
MO
esc

SS A
SD T
ON

OFf
KEy

BREAK PO NTS

SB[T AN
SB C A R=n
RB A
HB [Al

RH

RA

Menu of Conmmmands
Mode of Operation

Return to Command Level

Setting Soft

Command Key

Setting Break Points
Setting Conditional

Swi t ches
Setting Display Type
Mai n Di splay On

Mai n Display Of

Br eak Points

Renovi ng Break Points
Setting Hardware Break
Renove Har dware Break

Renmove Al |l Breaks

The Button I nterrupt

DI SPLAYI NG AND M2DI FYI NG

Li [A]
DR
R=n
MD [Al
MWV
WM [Al
MA [Al
PW

Li st Di sassenbl ed Code

Di spl ay Regi sters

Changi ng Regi ster Val ues

Menmory Dunp

Set Menory W ndow
Menory Modify
M ni Assenbl er

Set Protection Wndow

Chapter 6 TRACI NG AND RUNNI NG

RT Real Tinme Subroutines

down Skip the Current Instruction

ST [N St ep Code

TR [N Trace Code

TS A Trace Using Subroutine

EX [N Execut e code

ER Execute to Next RTS

ET A A Execution Tine

O [A Run Code at Full Speed

JS A Do JSR to Address
Chapter 7 EXIT

& K Go to System Moni tor

QU t Leave ProDev DDT via RTS
Chapter 8 QUTPUT

Renote Term nal Operation
Printer Qutput

Chapter 9 CUSTOM ZI NG
Setting ProDev DDT Options From Software

Subroutines for "Trace with Subroutine" Conmand

Appendi x A I T DON T WORK
Tr oubl e shooti ng

Appendi x B GENERAL COWVENTS

Appendi x E ERROR NUVBERS

CHAPTER 1
| NTRODUCTI ON

| NTRODUCTI ON

The ProDev DDT8 is conpatible with the Apple //e and enhanced //e. The DDT16
is conpatible with the Apple 11 GS. The 6502, 65C02 and 65802 (65816 I1GS) are
supported. This manual is witten with the assunption that the user is
famliar with the Apple Il series of conmputers. A working know edge of
assenbl y | anguage progranm ng for the 6502 or 65816 is al so assunmed, but you
do not need to be an experienced progranmer to begin using the ProDev DDT.

I ndeed, using the ProDev DDT should help you in your efforts to understand
assenbl y | anguage progranmm ng.

The ProDev DDT contains one of the nost powerful debuggi ng prograns avail abl e
for the Apple Il conputer. But the ProDev DDT is nuch nore than just a tracing
program It is a combination of a very extensive debuggi ng program along with
power ful hardware features, all working together to create, what we feel, is

t he nost powerful and uni que progranmm ng tool available for the Apple |
comput er .

Because the ProDev DDT's programis entirely in ROM (Read Only Menory), it's
al ways there when you need it. You don't need to worry about interfering with
t he programyou are working with because the ProDev DDT is virtually
transparent to the conputer. In addition, there is a hardware STOP ON ADDRESS
whi ch actual ly watches the addresses as they are being sent out by the
conput er and stops the program when the |ocation you have specified is
accessed. Another hardware feature is the EXECUTI ON Tl MER, which counts the
nunber of machine cycles a section of programtakes to execute. The TRACE
function is executed with hardware and not software |like the others, so it
allows you to actually see the affect of illegal instructions on your program
flow. The ProDev DDT's programis witten entirely in Assenbly | anguage for
the fastest operation possible.

From the very begi nning the ProDev DDT was designed to be used by the
demandi ng professional who will appreciate the nany powerful features
incorporated into the design. For exanple:

Ful | support of the 6502, 65C02, 65802 (65816 I1GS)!

The ability to use external displays to do program debuggi ng whil e
vi ewi ng your progranm s output on the Apple screen

Tracing prograns that actually reside in the text RAM area!

Access to the Non Maskable Interrupt for gaining control of prograns that
are in tight loops or lost in never, never |and!

And many nore features.

1-1

SYMBOLS AND CONVENTI ONS OF THI S MANUAL

Al'l conmmands to the ProDev DDT rmust end with pressing the "Return" key.
Thr oughout the rest of this manual that fact will be assuned. A few exanples
use the synbol "<cr>" to indicate pressing the "Return" key.

Sone inputs require entering "control characters". Control characters are
represented by "<ctrl>-Letter". To enter a control character, hold down the
"Control" key and press the desired key.

Conmand itens in brackets "[A]" are optional but the operation of the command
may be different if they are onmitted. The letter "A" is used to indicate a
menory Address. The letter "N' represents a Number other than an address.

Al'l nunbers displayed by the ProDev DDT are in Hexadeci mal (base 16) format.
In order to save screen space, dollar signs do not precede the digits.

The ProDev DDT assunes all inputs are in Hexadecimal format. Preceding dollar
signs are optional. To specify a Decinmal entry you nust precede the nunber
with an exclamation point "!".

EXAMPLE: Inputs of 10 or $10 both equal $10 (16 deci mal).

An input of !'10 is equal to $0A (10 decimal).
The command prompt for the ProDev DDT is ":". The pronpt is changed to "!"
when you enter the M N - ASSEMBLER. When a command pronpt is displayed it
i ndicates the ProDev DDT is waiting for your input.

The term"target" refers to the programthat is being debugged. For exanple,
"the target's text display" would refer to the output generated by the program
bei ng debugged

The letter "n" is used to represent the slot nunber of the ProDev DDT card. |f
an exanpl e has an address of "Cn00" you would substitute the slot nunber of
the ProDev DDT card for the letter "n". If the ProDev DDT card is installed in
sl ot number 4 you would use "C400" as the address.

The synbols {DDT8} or {8} are used in this nmanual to indicate features related
only to the DDT8 for the Apple //e. The symbols {DDT16} or {16} refer to the
DDT16 for the Apple 11GS

I NPUT ERRORS

If you input a command incorrectly, the ProDev DDT will usually respond with a
"beep" and a circunflex "~" to indicate the general area in which the conmand
was in error, followed by an error nunber. See Appendix E for a list of error
nunbers. I n some cases a specific nessage will be displayed describing the
error. Every effort was made to make the ProDev DDT as user friendly as
possi bl e wi thout sacrificing too nuch val uabl e program space.

1-2

BANK NUMBERS

Bank numbers nmay be entered for npbst commands. VERY | MPORTANT!! |f no bank
nunber is specified, then the |ast bank nunber referenced by the ProDev DDT
wi Il be used. Bank nunbers nust be followed by a slash "/". (E. G 00/2000).

{DDT8} - Bank 01 refers to the alternate 64K of RAMin 128K Apple //e's. If
you have an Applied Engi neeri ng Ramworks board or equival ent, you may specify
bank numbers greater than O1l.

NOTE! The Ramworks manual refers to the | owest bank on the Ramworks card
as bank 0. We refer to the main system nmenory as bank 0. Therefore, the ProDev
DDT di splays the | owest bank on the Ramworks card as bank 1

*kk k% ALERT *kk k%
Entering bank nunbers greater than the actual anount of menory in your
systemmay result in lost data in bank O.

| NSTALLATI ON | NSTRUCTI ONS

* kk k% WARN I NG*****
Al ways meke sure the conputer power is off when installing or renmoving any
peri pheral card, including the ProDev DDT. This is very inportant, and failure
to do so will result in damage to the ProDev DDT card and to your computer and
will void your warranty.

Installation steps:
1. Turn off the power to your conmputer and all equipnent connected to it.

* kk k% WARN I NG*****
Pl uggi ng the ProDev DDT card into the AUX CONNECTOR of an Apple //e will
result in severe damage to the ProDev DDT and to your Apple.

2. Along the back edge of the Apple are several |ong connector slots. The
ProDev DDT card will work in any of these slots with two exceptions. (DDT8) Do
not use the AUX connector which is positioned closer to the keyboard and next
to the power supply. Do not use slot #3 if you have an 80 colum card
installed in the AUX connector. (DDT16) Do not use the Menory Expansion
connector which is positioned closer to the keyboard.

3. The ProDev DDT card has a row of gold plated contacts al ong one edge. Try
not to touch these contacts. Be sure the power is still off.

4. Follow the instructions supplied with your conputer for installing
peri pheral cards.

5. The cable may be fed through any of the avail abl e openings in the back of
t he conputer.

6. Place the cover on your conputer.

1-3

7. Turn your conputer power back on and activate the ProDev DDT card by
entering the foll owi ng conmands:

(DDT16) The control panel setting nust be set for "YOUR CARD' in the DDT16
sl ot.

] CALL -151 or Jntr <cr> "This puts you in the nonitor prograni.
* Cn00G <cr> "n is the slot nunber of the ProDev DDT".

You should be greeted with the ProDev DDT version nunber and copyright notice.

If not, double check the installation procedures and read the section on "IT
DON' T WORK".

1- 4

CHAPTER 2
GETTI NG STARTED

FAST START

The procedure to foll ow when using the ProDev DDT m ght be sonething as
fol | ows:

The ProDev DDT card nust be initialized after powering up the conputer.

If you are using the DDT16 you may use the Init provided on the acconpanying
disk to automatically initialize the DDT during a GSOS boot. See the
instruction provided in the "read.ne" file for further information.

You may also initialize the DDT manually by getting into the Apple nonitor,
(froma BASIC pronpt type "call -151" or "mtr") and entering the command
"Cn00G', where 'n' is the slot nunber the DDT is installed in. Using the
conmands "PR#n", "IN#n", "n<ctrl>P", etc. will also start the DDT but they
di sabl e any DOS hooks and shoul d be avoi ded.

If you enter the ProDev DDT via "Cn0O0G', you can enter "QU' at the DDT pronpt
to return to the Apple nonitor.

W NDOWS
After starting the ProDev DDT you will see a wi ndowed 80 col umm di spl ay.
2
1 3 4
5
6 7

W NDOW #1
Information from Tracing, listing, mini-assenbler etc., is displayed in this

wi ndow. The flashing cursor that is awaiting your input, also known as the
conmand pronpt, is usually in this w ndow.

W NDOW #2

M = STK REA WRI LNG BNK P& 80S CXR { pseudo register
MNE MNE MNE ROM 2 OFF OFF ON

KEY BRK TYP SAV TXT M X HGR 80C ALT { state flags
93 OUT C02 ON ON OFF OFF OFF OFF

The first 2 Iines of window 2 contain the current state of the (Machine state
pseudo register. Mis not really a physical register in the processor, rather
it is a pseudo register that is created by the ProDev DDT. The Mregister is
al so displayed along with the processor's registers when tracing or displaying
regi sters. The Apple 11 GS nonitor also contains an M pseudo register which is
simlar, but not identical, to the ProDev DDT's M register.

The neaning of the Mstate register bits fromleft to right are as foll ows:

STK = reflects the state of the ALTZP switch ($C016)
MNE = main menory AUX = auxiliary menory (*)

REA = reflects the state of the RAMRD switch ($C013)
MNE = main menory AUX = auxiliary menory (*)

WRI = reflects the state of the RAMART switch ($C014)
MNE = main menory AUX = auxiliary menory (*)

LNG

reflects the state of the |language card switch ($C012)
ROM = Autostart ROM RAM = | anguage card RAM (*)

BNK = reflects the state of the LC bank switch ($C011)
1 =bank #1 in 2 = bank #2 in (*)

P& = reflects the state of the PAGE2 switch ($C01C)
OFF = Page 2 off ON = Page 2 on (*)

80S = reflects the state of the 80STORE switch ($C018)
OFF = use RAMRD, RAMART ON = access display page (*)

CXR = reflects the state of the SLOTCXROM switch ($C015)
OFF = Slot ROM at $Cx00 ON = Internal ROM at $Cx00 (*)

The bottomtwo |ines of window 2 contain the current state of various flags
and switches. Fromleft to right they are as follows:

KEY = shows the current ASCI| key code (with high bit set) that will interrupt
the ProDev DDT while Tracing or Executing nultiple instructions. The default
setting is $93 which is Control -S.

BRK = indicates if real breaks are present in the target program
QUT = no real breaks |IN = real breaks exi st

TYP = indicates the type of processor the ProDev DDT is set to recognize when

assenbl i ng or disassenbling instructions.
02 = 6502 (€02 = 65C02 802 = 65802{8} 816 = 65816{16}

2-2

SAV = reflects the state of the ProDev DDT's "Text Screen Save" npde.
ON = screen save on OFF = screen save off

TXT = reflects the state of the TEXT switch ($C01A)
OFF = text node off (graphics) ON = text node on (*)

M X = reflects the state of the M XED switch ($C01B).
OFF = full page graphics ON = nmixed txt & gr (%)
HGR = reflects the state of the HRES switch ($C01D)

OFF = lo-res graphics ON = hi-res graphics (*)

80C = reflects the state of the 80COL switch ($CO1F)
OFF = 40 columm display ON = 80 columm display (*)

ALT = reflects the state of the ALTCHARSET switch ($CO1E)
OFF = Apple][char set ON = alternate char set (*)

(*) is the state when the switch is greater than 128 ($7F).

W NDOW #3

The contents of twelve nmenory |ocations are displayed as a hexadeci mal nunber
and equi val ent ASCI| character. The addresses are specified by a two digit
bank number followed by a four digit address.

W NDOW #4

The current |ocation of the Hardware Breakpoint (if any) is displayed at the
top of this window followed by the ten npst recently accessed Breakpoints.
See "HB" & "SB" for a further description of the breakpoint format.

W NDOW #5

An area of the system stack RAMis displayed around the current |ocation of
the stack pointer which is indicated by "<"

W NDOW #6

This is the effective address wi ndow. The actual address that a program
instruction is referring to is not always obvious. For exanple LDA ($34),Y.
When tracing or disassenbling instructions, the ProDev DDT cal cul ates the
effective address and displays its contents in this w ndow surrounded by the
two | ocations above and below. The effective address is indicated by "<".

The ASCI| equival ent of each |ocations hexadecimal contents is al so displayed.
{DDT8} - The current settings of the systens various menory switches are used

to calculate if the address is in main or auxiliary menory. The corresponding
bank number (00/ or 01/) is displayed.

2-3

W NDOW #7

This is the protection wi ndow. You may specify three types of nenory
protection in any of six address ranges. See "PW for a further explanation

STEPPI NG CODE

Stepping a programis very sinple. Let's assunme you would like to start
stepping a program begi nning at menory | ocation $800. The first thing you need
to do is set the programcounter to point to location $800. You do this from
the ProDev DDT by using the conmand "PC=". To set the program counter to $800
you woul d enter the follow ng:

:PC= 800 <cr> or PC= $800 <cr> "dollar sign is optional".

If you want to see the instruction at |ocation $800, use the "DR' commuand. For
exanpl e with the DDT8:

:DR <cr >
A=00 X=00 Y=00 S=EO M=OA L=0 P=--1----C <--- displ ayed
00/ 0800: EA NOP <---

The first line of the display contains the contents of the accumul ator (A=00),
X index (X=00), Y index (Y=00), stack pointer (S=EO0), M pseudo register
(M=0A), | anguage card condition (L=0) and the status register (P=--1----Q)

For a detail ed description of these registers, refer to the "DR' command in
Chapter 5. The second line displayed shows the address of the program counter
i ncl udi ng the bank nunber (00/0800:), the hexadecimal form of the instruction
(EA), and the instruction menonic (NOP).

To begin stepping you would use the "ST [N]" conmand. |If you wanted to step
one instruction and stop you would enter the follow ng:

:ST <cr> or ST 1 <cr> "One is assuned if no nunber entered"

A=00 X=00 Y=00 S=EO M=OA L=0 P=--1----C <--- displayed
00/ 0801: EA NOP <---
T: <--- The new pronpt indicates "Trace/ Step" node.

The registers displayed reflect any changes caused by the instruction just
st epped. The new program counter is displayed along with the instruction that
woul d be executed next.

When the ProDev DDT is in the "Trace/ Step" node, pressing the "Return" key

wi Il cause the instruction pointed to by the programcounter to be traced or
stepped. The "Trace/ Step" node is disabled by entering any other command.

2-4

CHAPTER 3
SETUP COMVANDS

Mor ? - MENU

Entering the command "M or "?" will produce a list of the avail abl e conmands.
You will find this very convenient and after you have used the ProDev DDT for
a while it may not be necessary to refer to the manual. The nmenu listing

i ndi cates the way in which the command nust be entered and a brief rem nder of
what the conmmand does.

MO - MODE

The MODE command al |l ows you to change some of the DDT's settings.
Exanpl e:

MO

--- Mdde of Operation ---

Text screen save
1=on 2=off
Enter <1> :

CPU
1=6502 2=65C02 3=65816
Enter <2> :

I1/O slot #
1:out 2:in/out 3:nornal
Enter <3> :

Text screen save

If you are not concerned about overwiting the text RAM area you can turn the
screen save off by entering a "2". This will elinmnate the strange screen
updating that occurs when tracing code. When this npbde is on, the contents of
the text RAM area are preserved by exchanging the contents of the screen
menory with a buffer in the ProDev DDT's own RAM nenory.

If you are sending the ProDev DDT's output to a device other than the main
screen the screen save should renain on.

If the target programis using the text RAM area for data or code storage, the
screen save nust be on to prevent the ProDev DDT fromoverwiting the text RAM
area. Wth the node on, it is possible to trace code that resides in the text
RAM ar ea.

CPU

Enter 1,2 or 3 to select the type of CPU that your code was witten for. Your
sel ection is used by the DDT so the proper mmenonics will be displayed during
di sassenbly or accepted by the DDT's mini-assenbler

(DDT8)
** See the note in Appendi x B about 65802 **
O course, selecting the 65C02 or 65802 will not allow you to trace or run the

extra instructions provided by these processors unless your conputer is so
equi pped.

/O slot #
Sel ect the I nput/CQutput slot of the DDT.

Sl ot 3 uses the Apple's keyboard and screen for input and output with the
ProDev DDT.

Slot 2 redirects both input and output to slot 2. This option allows
controlling the ProDev DDT froma renpte term nal. The output fromthe ProDev
DDT will be sent to the terminal screen and the input to the ProDev DDT will
be entered on the terninal's keyboard. The input and output of the target's
programis not changed. Wth this nethod of debugging, it is possible to
observe the output fromthe target's program be it text or graphics, and the
output fromthe ProDev DDT at the sane tine. See Chp. 8 for nore information

Slot 1 directs the ProDev DDT's output to slot 1. Input is via the Apple's
keyboard. This option is intended for generating a hard copy of your work or
for users who do not have access to a terminal but would still like to trace
progranms and view their prograns output at the same tinme. Be sure your printer
is ready and on line before issuing this comand. See Chp. 8 for nore

i nformation.

esc - : LEVEL

The "escape" key, is used to return to the ProDev DDT's command | evel from
various comrands or w ndows.

SS A - SET SW TCH

This command all ows you to set any of the Apple's soft switches that exist in
the address range from $C000 to $COFF. To do so, sinply enter "SS" followed by

the | ower byte of the desired address. For exanple:

:SS 50 sets switch $C050 (graphics on)
:SS 03 sets switch $C003 (read auxiliary nenory)

To ensure that all types of switches are set, the ProDev DDT does one wite
and two reads of the selected |location

3-2

SD T - SET DI SPLAY Type

Set display is simlar to Set Switch. It deals only with display formats and
accepts nore easily remenbered switch identities. For exanple, to turn On the
Doubl e hi-res display, sinply enter SS D. The follow ng switch types are
recogni zed.

- Sel ect page 1

- Sel ect page 2

- Select 40 col um displ ay

- Sel ect 80 colum display

- Select Alternate character set

- Display Double hi-res graphics
Di splay Full screen graphics

- Display standard Hi-res graphics
- Display Lowres graphics

- Display nixed text and graphics
- Select Normal character set

- Super hi-res {DDT16}

- Display Text screen {DDT16 turns off Super hi-res}

—ANZZrITO>ORANE

ON - DI SPLAY ON

ON will restore the main ProDev DDT screen from al nbst any condition. If "text
screen save" is on, the contents of the screen will be saved.

OFF - DI SPLAY OFF

OFF di sables all screen displays by the ProDev DDT. This speeds up tracing,
whi ch spends a great deal of time updating the screen information. The

EXecution command is still much faster but there are certain situations where
the trace node may be preferred. The saved text screen will be restored if
"text screen save" is on. The various display switches will be restored to

there original settings. This allows you to view the output fromthe target
program
KEy - SET
Key is the name given to the one ASCI| key code that will interrupt the ProDev
DDT when it is tracing or executing nultiple instructions. The default is $93
(control-S). The high bit is always on. To change Key sinply enter

: KE the ProDev DDT will respond with:

: KEY =

The next key that you type will be accepted as the new code for KEY. If you
want ed control -A you would sinply hold down the "Control" key and press "A"

Entering the correct Key while tracing or executing only pauses the operation.

You may el ect to continue by pressing any other key or exit to the ProDev DDT
conmand | evel by pressing "esc"

3-3

3-4

CHAPTER 4
BREAK PO NTS

SB [T A N - SET BREAK POl NT

Break points work like stop signs in the target program By strategically

pl aci ng break points you can deternine nmany things about the |ogical flow a
program fol |l ows. Break points nust be placed at EXACTLY the same address as
the first byte of the instruction where you want the programto stop. (see the
foll ow ng exanpl e)

TYPES OF BREAKS

The ProDev DDT has two types of software break points, "Real" and "Inplied".
There is also a hardware break point, "Hard Break", that will be described
| ater.

A Real break inserts "BRK" (break, HEX 00) conmands in place of any
instruction that is in RAM nmenory.

The I nplied break does not nodify your program This allows Inplied breaks to
be used in ROM | ocations or wite protected RAM Inplied breaks are ONLY

af fecti ve when STepping, TRacing or EXecuting code and will not stop a program
if it is running in real tine.

The formof the Set Break instruction is:
SB [Type Address . Nunber]

VWhere Type is input as "R' for Real break or "I" for Inplied break. Type "R
is assunmed if no Type is indicated.

Address is any Hex nunber or decinal equival ent. Bank nunbers may be specified
and must be followed by a "/" slash

Nunmber is any Hex or decimal number in the range of $0001 to $FFFF. This is
the nunber of tinmes to pass this breakpoint before stopping program execution
Entering $0000 will result in passing the breakpoint 65,6536 times. Therefore,
the actual range is 1 to 65,536 or $0001 to $0000 but that |ooks weird. If no
value is input for Nunber then the default of "1" will be assuned.

If you specify a break where one already exists, the new break information
will replace the old.

Entering "SB<cr>" will provide a list of the current SOFT BREAKS, if any. The
break points are listed in the order |ast accessed, with the npst recent being
at the top left of the display. This command is primarily intended for use
with a serial termnal but is also useful if you have entered nore breakpoints
than can be displayed in the "Break W ndow'.

A maxi mum of 50 breakpoints is allowed at any one tinme. The ten npbst recently
accessed breakpoints are displayed in the "Break Wndow' of the ProDev DDT's
mai n di splay screen

EXAMPLE

SB | 800.1
Sets an Inplied break at |ocation $800 in the current bank and will stop
the first time it is encountered.

SB R 1/0900. 3
Sets a Real break at |ocation $900 in bank 1 {DDT8 aux nenory} and will
stop the third tine it is encountered.

SB R 03/2345.!1200
Sets a Real break at |ocation $2345 in bank 3 {DDT8 aux nmenory} and wil |
stop after decimal 200 encounters.

SB 2003
Sets a Real break at |ocation $2003 in the current bank and will stop the
first time it is encountered.

EXAMPLE

Stop the program bel ow when the "JMP 3000" instruction is reached.

00/ 2000: A9 A0 LDA #A0

00/ 2002: 20 ED FD JSR FDED

00/ 2005: 4C 00 30 JMP 3000

We will use a Real Type breakpoint so the programw |l be interrupted from
running in real tine. W also want to stop the first tine the breakpoint is
encountered. The following will place the breakpoint:

:SB R 0/2005.1 or :SB 2005 { assunes bank O is current default
The new breakpoi nt shoul d appear in Wndow #4, the Break W ndow.
{Now run the program}

: GO 2000 { start running programin real tine

When the Breakpoint is reached the programis halted and the processor's
regi sters are displayed as foll ows {DDT8}.

BREAKPO NT
A=A0 X=00 Y=FF S=FB M=OA L=0 P=N-1----- { registers may vary
00/ 2005: 4C 00 30 JMP 3000

Not e! The word "BREAKPO NT" was di spl ayed, indicating the ProDev DDT stopped
t he program execution with a Breakpoint.

* k ok k% HQNIT \/\mKS *kk k%

When you enter a Breakpoint, the ProDev DDT saves the current instruction to
its own internal menory and replaces the instruction byte with a BRK comrand
(HEX 00). Then it waits for a BRK comand to be executed. Wen it sees one, it
checks to see if it is a break that you have entered. If it is, the ProDev DDT
stops the program and gives you control. However, when

4-2

it displays the instruction, it displays the original instruction byte and not
t he BRK command which really occupies that |ocation

VWen the "GO' command is used to run a program and a Real Break is
encountered, the programis stopped, the DI SPLAY REQ STERS comand i s
automatically executed, and you are returned to the ProDev DDT's comrand
| evel .

*xrxxx MOVI NG CODE & BREAKPOI NTS *****

Caution!!! If a section of code containing Real Breaks is relocated the ProDev
DDT wi Il not recogni ze the Breaks and undesirable results will occur.

If part of a program containing Real Breaks is overwitten by new code, the
ProDev DDT will not know about it. If you then proceed to renove the Rea
Breaks the existing code will be overwitten by the contents of the origina
br eakpoi nt | ocati on.

CONDI TI ONAL BREAKPO NTS { DDT16}

Condi tional breakpoints extend the function of normal breakpoints by allow ng
you to use the contents of the processor's registers as break conditions. The
conmand takes the foll ow ng form

SB C $01/2345 , X = $6789

N NANNNNNN NANNNN

NN

| | | |] __ Indicates a conditional breakpoint
| _|
| _|

| _ Register for conparison
| __|__ Logical operator
| __ Value to conpare to register

Thi s exanple woul d cause a break at |ocation $01/2345 if the contents of the
"X' register was equal to $6789.

The registers that may be used for conparison are:
A XY, S DB MQand P
The al | owabl e | ogi cal operators are:

| ess than

greater than

equa

not equa

| ess than OR equa
greater than OR equal

=% Il VA

Al'l comparisons are done in full 16 bit native node. 8 bit registers are
conpared to the | ow byte of the conparison word

Condi tional breakpoints nodify the target programthe sanme way Rea
breakpoi nts do and therefore they nay not be used in ROM code | ocations.

4-3

The purpose for adding this feature was to allow breaking on particular too
calls. Tool calls are made by placing a two-byte value in the X register that
identifies the tool set and the conmmand value to use and then doing a JSL to
the common tool entry point at $E1/0000. To break on a particular tool call we
sinmply deternine the value of the X register that corresponds to the desired
tool to break on and place a conditional break point at |ocation $E1/0000. The
foll owi ng statement woul d break on a TLShut Down tool call

SB C $E1/ 0000, X=0301

RB A - REMOVE BREAK

The REMOVE BREAK command al |l ows you to renpve any of the Breakpoints which you
have entered. The address is mandatory, as indicated by the fact that the
letter "A" is not enclosed in brackets. Wen you renove a Breakpoint the
original instruction is fully restored and the address is renoved fromthe
list of Breakpoints.

EXAMPLE
Renove the Breakpoint from address $2005
:RB 0/2005 or :RB 2005

HB [A] - HARD BREAK

The HARD BREAK conmand appears very simlar to the Set Break command. The
conmand actually activates the one hardware Stop-On-Address the ProDev DDT is
equi pped with. Oritting the optional address will result in a display of the
current HARD BREAK address. Wen activated, the ProDev DDT watches the
addresses that are being accessed by the processor. It stops the target
program when it sees the specified address being accessed.

The Hardware Break may be used as a real tine breakpoint for prograns that are
running fromread only menory (ROM. This conmand may al so be used to nonitor
any menory |ocation and stop your program when that |ocation is accessed. For
exanple, if a certain menory location is being nodified and you wish to find
out which instructions are causing the nodification, you sinply use the HARD
BREAK command to stop the program when the menory | ocation is accessed.

The bank address specified in the Hard Break address is not actually used in
the DDT's hardware conparator. This is because the DDT's conparator is only
able to conpare 16 bits at once. The conparison of the bank address is done in
software by | ooking at the target progranms 'program and 'bank' registers. If
no match is found the Hard Break is ignored. You can tell the DDT to ignore
bank addresses when doing a Hard Break by using the HBX conmmand:

HBX addr ess

This will place a Hard Break at the specified address and will stop in al
banks, not just the current program or data bank. The command is

useful if your programis being stepped on and you want to find the offending
i nstruction. The normal Hard Break would usually work unl ess the offending
instruction is a 'long indirect' addressing type such as STA [aa]. In this

4-4

case the destination bank address is not the current program or data bank and
the normal Hard Break would not stop the program

If you enter the conmand correctly the Breakpoint display will be HX address
i nstead of HB address.
EXAMPLE Used as a real tinme ROM breakpoint.

Let's assune the follow ng programresides in ROM and you wi sh to place a rea
time breakpoint at |ocation $FDB5.

00/ FDB3 A5 3C LDA 3C

00/ FDB5 09 07 ORA #07

00/ FDB7 85 3E STA 3E

Pl ace the Hard Break with the foll owi ng conmand:
: HB 0/ FDB5

The Break W ndow should display the new Hard Break location in the top of the
wi ndow as "HOO/ FDB5" .

Now i f you run the programthe Hard Break will interrupt execution when $FDB5
is reached and will display the foll ow ng.

HARD BREAK

A=07 X=00 Y=00 S=F4 M=OA L=0 P=--1B---- { contents may vary

00/ FDB7: 85 3E STA 3E

Not e! The address di splayed is $FDB7 and not $FDB5 where you placed the Hard
Break. This assunes you started the programrunning prior to | ocation $FDB3.
This is normal operation. One or two addresses follow ng the selected Break
| ocation is displayed because of the way the CPU handles interrupts.

*xxxx ADVANCED EXPLANATI ON *****

When the ProDev DDT sees the address $FDB5 it sends the processor an
interrupt. However, the processor does not stop program execution until it has
finished the instruction that it is currently working on. VWiich in this case
is "ORA #%07". The processor conpletes the "ORA #$07" instruction and then

gi ves control over to the ProDev DDT which is why the address displayed by a
HARD BREAK is the instruction or two followi ng the actual address of the
BREAK.

EXAMPLE nenory | ocation being changed

Menory | ocation $21 is being changed when you run your program and you wi sh to
know whi ch instructions are responsible. Sinply use the HARD BREAK feature as
fol | ows:

:HBX 0/21 or :HBX 21

When you run your program and | ocation $21 is accessed your programw || be
stopped at the instructions follow ng the one which accessed |ocation $21. |If

4-5

you wi sh to check for any other instructions which also access |ocation $21,
simply enter the "GO' command to continue running your program |f any other
instructions access location $21 they will also cause the HARD BREAK to stop
t he program

RH - REMOVE HARD BREAK

The REMOVE HARD BREAK command al |l ows you to renpve the current HARD BREAK. An
address is not required, since there is only one HARD BREAK.

RA - REMOVE ALL BREAKS

The REMOVE ALL BREAKS command all ows you to renpve all existing SOFT BREAKS
and the one HARD BREAK wi th one command.

EXAMPLE
To renove all existing BREAKS sinply enter the follow ng:
" RA

The BUTTON | NTERRUPT

The BUTTON | NTERRUPT gi ves you access to the NM (non-naskable interrupt) line
t hrough the ProDev DDT card. This allows you to regain control of prograns
that are running in real tine or of prograns that are running out of control.
The BUTTON | NTERRUPT will not work until the ProDev DDT card has been
initialized foll owing a system power up.

The hardware on the DDT card generates an NM to interrupt the currently
runni ng program

{ DDT16}

The DDT uses the NM vector at $03FB to redirect programcontrol to the DDT.
This vector is set when you initialize the DDT. If this vector gets changed
after the DDT has initialized it, the button interrupt will not get vectored
to the DDT and will cause bad things to happen. Booting ProDOS 8 is one way to
change the $03FB vector. Always try to initialize the DDT just prior to using
it to avoid this problem

{ DDT8}

The DDT uses hardware to disable the Apple //e's ROVs and take control of the
NM handler. It is possible to interrupt any programat any tinme.

4-6

CHAPTER 5
DI SPLAYI NG AND MODI FYI NG

DR - DI SPLAY REGQ STERS

Di spl ay registers produces the foll ow ng displays:

{ DDT8}

A=00 X=00 Y=00 S=EO M=OB L=0 P=--1B---- { contents may vary }
00/ FF69: 20 EO FE JSR FEEO

{ DDT16}

A=0000 X=0000 Y=0000 S=01EO0 D=0000 B=00 { contents may vary }
M=09 Q=FF P=30=--MX---- L=0 E=0 I=0

00/ 0800: EA NOP

The various registers are represented by single letters with the exception of
t he program counter which is represented in nunber form

The letters and their corresponding registers are as foll ows:

Accumul at or

X i ndex

Y i ndex

St ack pointer

Machi ne state (pseudo register)
Language card state (pseudo register)
Processor status

DDT16}

Di rect page

Dat a Bank

Quagnire state

Enul ation (1 = 6502, 0 = Native)
Interrupt (1 = Interrupts disabl ed)

TMOWOT" Tr2n<X>r

The status bits are also represented by single letters as foll ows:

Negative flag

oVerflow fl ag

expansi on flag (al ways one) {8}
Mermory size {16}

Break conmand flag {8}

i ndeX reg. size {16}

Deci nal node fl ag
Interrupt disabled flag
Zero result flag

Carry flag

flag not set (flag clear)

'"ONTOXIZIRPEL<Z
T TR TR TR T TR IR TR TR TR

"M=0OB" shows the condition of the M pseudo register
"L=0" gives the condition of the | anguage card where:
0 = ROM sel ected, 1 = RAM bank #1, 2 = RAM bank #2

{ DDT8}

The bank number (00 or 01) is calculated for the current program counter

| ocation according to the settings of the various nenory configuration

swi tches. The bank nunber is then displayed before the program counter and
followed by "/". In this exanple "00/FF69", the bank is 00 and the program
counter is $FF69.

R=N - REG STER = N

The REAQ STER = N command all ows you to enter a HEX value into any of the
processor's registers. "REG=" indicates the letter(s) representing any of the
valid registers followed by an "=" equal. The program counter is signified by
"PC', all of the other registers are signified by the sane letters described
above in the DI SPLAY REG STERS conmand with the exceptions; M Qand L

regi sters are pseudo registers and may not be directly nodified.

EXAMPLE
:A= $34 or :A=34 {Change the value of the accunulator to $34}

Note! The dollar sign is optional and al so note the spaces before the number
are ignored. In both cases the value $34 is entered into the accumulator. To
verify this sinply use the DR conmand to display the registers.

The processor status flags may al so be individually set or cleared by entering
"P=" followed by a "Return" and then entering a "1" or a "0" for individua
fl ags.

EXAMPLE
tP=

FLAGS Nv1BDI ZC
STATUS 00110000
ENTER 1 {Set the Z flag}

On a J[GS interrupts are used extensively. If you are tracing code with the
DDT16 and an interrupt occurs the normal flow of the conputer programtakes
you to the interrupt handler routine. This can be very frustrating if you are
not interested in tracing the interrupt routine. To get around this problema
pseudo regi ster has been added, the "I1" register. The "I" register is used to
prevent outside interrupts from being serviced while tracing code.

Enter the command "I=1" to prevent servicing interrupts while TRacing,
STeppi ng or EXecuting code. Enter "1=0" to clear the "I" register. Be sure to
set the "I" flag in the Status register to the proper state to enable
interrupt servicing. Please note that while the "I" register equals 1, the "I"
flag in the status register will always get set to 1

Al so, please note that while tracing with the "I" register set to 1, any
conmands that affect the "I" flag will essentially be ignored. It is therefore

5-2

up to the user to determ ne the proper setting of the "I" flag in the status
regi ster after using the "I=1" command.

The "1" register will not function properly if an accelerator is enabled.

Li [A] - LIST

The LI ST command causes 20 |lines of code to be displayed to the current output
device, starting at the address specified by "[A]". Oritting the optional

address will cause the listing to start at the | ast address accessed by the
ProDev DDT.
EXAMPLE
;LI 0O/EOO0 or L 0/EOOO {Note! If the "I" is onitted
then at | east one space nust
00/ E000: RC 28 F1 JMP F128 follow the "L".

00/ E003: 4C 3C D4 JMP D43C

00/ EO2A: A5 14 LDA 14 {"L <cr>" will continue |ist
from next instruction.

MD [A] - MEMORY DUWP

The MEMORY DUMP command di spl ays 256 bytes of HEX data with 16 bytes per row
Each HEX byte's corresponding ASCI| character is displayed at the end of each
row. Oritting the optional address will cause the display to start at the | ast
address accessed by the ProDev DDT. Control characters are displayed as a

peri od.

EXAMPLE

: MD 0/ DODO

00/ DODO: 45 4E C4 45 4F D2 4E 45 58 D4 44 41 54 Cl 49 4E ENDFORNEXTDATAI N
00/ DOEO: 50 55 D4 44 45 CC 44 49 CD 52 45 41 C4 47 D2 54 PUTDELDI MREADGRT

etc.

5-3

MV [A] - MEMORY MODI FY

The MEMORY MODI FY command al l ows you to enter HEX data directly into nenory.
Data is input one byte (2 HEX digits) at a tine. Pressing the "down arrow', or
"Return" on a blank line, will display the next address and data byte. Press
the "up arrow' to display the previous address and data. If nmore than two
digits are entered, the ProDev DDT will take the last two digits entered. To
exit the MEMORY MODI FY command, press the "esc" key.

EXAMPLE
: MM 0/ 2000

00/ 2000 00 11

00/ 2001 00 22

00/ 2002 00 33

00/ 2003 00 "up arrow' { Backup}

00/ 2002 33 56744

00/ 2003 00 "up arrow'

00/ 2002 44 {The last two digits entered were 44}
{Press "esc" to exit}

MA [A] - Mni-Assenbler

The M ni - Assenbl er allows you to enter assenbly | anguage code directly from
the ProDev DDT. This elimnates reloading your assenbler, editing in your

nodi fications, assenbling and | oadi ng your program each tine you wish to make
a sinple nodification or add small sections of code to try new ideas. Wth the
ProDev DDT's nini-assenbl er you can nodify your programdirectly and as nany
times as needed to get the desired result. Once the programis working
properly it is only necessary to edit and assenbl e your source program one
time. This is a great time saver and should greatly increase your programm ng
productivity.

The ProDev DDT's mini-assenbler is patterned after the nini-assenbler that was
included in the old Apple Il Mnitor ROM w th some exceptions.

Al'l menonics are as specified by "The Western Design Center, Inc." in their
Ws5C816 data sheet. The addressing nodes for the 6502 instructions are the
sane as those described for the Apple nmini-assenbler. The new addressing

nodes for the 65C02 and 65802/816 are described in the W5C816 data sheet.

Two assenbl er directives have been included to facilitate the entry of Data
and ProDGCS calls. They are:

HEX - Allows direct entry of 2 digit hexadeci mal nunbers.

ADR - Allows direct entry of 4 digit hexadeci nal addresses. The addresses
are stored in low order / hi order byte format.

5-4

Fol | owi ng are the addressi ng nodes as recogni zed by the ProDev DDT's

M ni - Assenbl er:

STANDARD 6502 ADDRESS FORMATS

TYPE:

accunul at or

i mplied

i medi at e

di rect

di rect indexed

program counter relative
direct indexed indirect

di rect indirect
absol ut e
absol ut e i ndexed

absol ute indirect

FORMAT:

Mhemoni ¢ only
Mhemoni ¢ only
#n

< X

<=

ndexed

—~D OO ~—~"000
x

Q-

65C02 ADDRESSI NG FORMATS

TYPE:

di rect indirect
absol ut e i ndexed

FORMAT:

- (d)
i ndi rect (a, X)

65802/ 816 ADDRESSI NG FORMATS

TYPE:

program counter relative |ong

di rect indirect
di rect indirect
absol ute | ong

absol ute | ong i ndexed

stack relative

stack relative indirect indexed

bl ock nove
Abbr evi ati ons:

byte
byte
byt e
byt e
byt e
byte
byt e

PWNWNREP P

T T TQAQS

Al'l input values are assuned to

si gn,

i nput for an address,

“$nn",

i s optional

FORNAT:
ri

ong [d]

ong i ndexed [d],Y
a
al, X
d, S
(d,s),Y
bb

numnber

di rect address

rel ati ve of fset
relative long of fset
absol ut e address
absol ute | ong address
bank nunber

be HEX digits and as such a precedi ng dollar

If fewer than the required nunber of digits are
the ProDev DDT will automatically add

5-5

| eading zeros to fill the address; if nore than the required nunber of digits
are entered, the last to be entered will be used.

The ProDev DDT makes no distinction between direct and absol ute addressing
nodes. |f you enter an instruction which could use either direct or absolute
addressing, direct will always be used.

Instructions with accumul ator and inplied addressi ng nodes do not use
oper ands.

The destination address for branch instructions is entered directly and the
relative offset is automatically calculated. If the destination address is out
of branch range, the ProDev DDT will respond with a "beep", the nmessage "ERR
BRANCH OUT OF RANGE" and will reject the input. If you input an instruction
whi ch the ProDev DDT does not recognize or if you attenpt to nodify an
instruction which currently has a Real break at that address, the ProDev DDT
will "beep" and place a circunflex, "~", under the general area of the

probl em

Mhenoni cs and addressi ng nodes of the 65C02 or 65802/816 will not be accepted
unl ess the proper node has been selected. (See the "MJ' command for an
expl anati on of how to change nodes.)

When you enter the nini-assenbler the pronpt will be changed froma col on
":", to an exclamation point, "!". The current instruction is disassenbled and
di spl ayed at each address.

Not e! The program counter is not affected by the "MD", "MM' or "MA" commands.
Thi s means you can be tracing a program stop, go nodify data in nmenory and
return to tracing without |osing your |last position or the contents of any of
your registers.

EXAMPLE
I nput a short program (This programwi |l also be used in |ater exanples)
: MA 0/ 2000
00/ 2000: 00 BRK { the current instruction is BRK
ILDA #00 { enter the new instruction
A9 00 { code generated by mni-assenbler
00/ 2002: 00 BRK { the next instruction is displayed
I STA 6 { etc.
85 06
00/ 2004: 00 BRK
I LDA#30 { notice that spaces are optiona
A9 30
00/ 2006: 00 BRK
I STA 7
85 07
00/ 2008: 00 BRK
I LDY #1
A0 01
00/ 200A: 00 BRK
ILDA (06),Y

Bl 06

5-6

00/ 200C: 00 BRK

I TAX
AA
00/ 200D: 00 BRK
I STX 3002
8E 02 30
00/ 2010: 00 BRK
I NX
E8
00/ 2011: 00 BRK
I BNE 200D
DO FA
00/ 2013: 00 BRK

! { "esc" returns to command | eve

MV - MEMORY W NDOW

Conmand MW al l ows you to select the various nenory |ocations that you are
interested in monitoring in the nmenory wi ndow. \Wen you enter "MN the cursor
will be placed in the menory wi ndow on the first address. To change an
address, use the Return key or Down arrow to nove the cursor over the desired
address. Change the desired digits by using the right and left arrows to
position the cursor and sinply enter the new digits. Press the "esc" key to
exit the menory wi ndow. The contents of each menory location are displayed in
Hex and ASCI | .

In Serial nmode the MW conmmand will not display anything on your term nal but
will expect you to enter the addresses anyway. You woul d NOT want to do that
since you don't have the nenory wi ndow di spl ayed on your terminal. Use the
Menory Mbdify command to exam ne menory | ocations instead.

PW - PROTECTI ON W NDOW

The protection wi ndow consists of six address ranges. Each address range
consists of a type letter followed by a bank nunber followed by the first
address of the range, a period, and the last address in the range.

There are three types of ranges. They are:

T - Trace range. A trace range allows specified sections of code to be
executed in real-tine. During tracing or executing, if the programcounter is
pl aced inside a T range by a JSR{8} or JSL{16} instruction, the programwl|
start real-time execution until the instruction following the JSR/JSL in
menory is reached. This is very useful for time critical sections of code such
as disk 1/0O

{DDT16} Note! The stack is treated as native. Failure will occur if target
code is enmulation node (8 bit) JSR & stack is at $101 or $100.

P - Programonly. If one or nore programonly ranges are specified, the
program counter nust remain inside one of the P ranges at all tinmes
during tracing or executing. |If the program counter ventures outside these

ranges, execution will stop and the nmessage "OUTSIDE RANGE LIMTS" will be
di spl ayed. Code that is running in real-time or is contained in a Trace range
is not affected.

N - No access. This range is active ONLY when Tracing. If the effective
address of any instruction, or the current program counter, enters a No access
address range, program execution will be halted and the message "NO ACCESS
HALT" will be displayed. This is one case when using the "OFF" command to
speed up tracing nmay be desired.

"Space" - cancel current range. Entering a space over the range type wll
cancel the effect of the current range. The address of the range will not be
af fected and the range type may be restored.

If you enter the conmand "PW the cursor will be placed in the protection
wi ndow. Use the "down" arrow or "Return" key to position the cursor over the
desired range. Enter the range type letter followed by the address
i nformati on. Leave the wi ndow by pressing the "esc" key.

In serial 1/0O node, the ranges will be displayed one at a time and you
will be given an opportunity to enter new information or go to the next range.
EXAMPLES

TOO/ 8000. 8200 Begin real-tinme execution if the program counter enters
the range of $8000 to $8200 in bank 00.

P01/ 0800. 4000 Stop execution if the program counter gets outside the
range from $800 to $4000 in bank O1.

NOO/ 0100. 01FF Stop tracing if the program counter or the effective

address of any instruction enters the range from $100 to $1FF i n bank 00.
Wor ks only when tracing.

5-8

CHAPTER 6
TRACI NG AND RUNNI NG

GO [A] - RUN

The GO conmand is used to start real time execution of the target program |If

no address is specified in the command then execution will begin at the
current program counter location. If the optional address is present, program
execution will begin at the indicated address.

EXAMPLE

Let's assune that you have a programin menory, starting at address $2000.
Now, run the program fromthe ProDev DDT.

: GO 2000 {Begin full speed execution at |ocation $2000

ST [N - STEP

The STEP command al |l ows you to execute instructions one at a tinme. After each
instruction is executed your programis interrupted and the DI SPLAY REQ STERS
conmand i s executed. The instruction which is displayed is the next that wll
be execut ed.

The nunber of instructions to step is indicated by "[N]" and is optional. If
no nunber is input then "1" is assunmed. |If zero is input, 65,536 instructions
will be stepped unl ess paused by the "KEY" value (default is <ctrl>-5).
Pressing "esc" will cancel the step, any other key will continue.

Once the STEP command is invoked, the pronmpt will change from":" to "T:" to

indicate the 'Trace/ Step' node is active. Wien the 'Trace/ Step' nobde is active
it is only necessary to press the "Return" key to trace or step the current
instruction. The 'Trace/ Step' node renmmins active until canceled by entering a
di f ferent commrand.

If you are stepping nore than one instruction (E.G ST 5) and a SOFT or HARD
BREAK is encountered, the stepping will stop. To continue, sinply enter the
STEP command again. |If a HARD BREAK is encountered it will show up twi ce. Once
at the instruction where it was placed and once at the follow ng instruction.
This is normal and is caused by the way the CPU pre-fetches instructions.

6-1

EXAMPLE { DDT8}

Step the programthat was entered in the "MA" comand description.

: PC=2000

: DR
A=00 X=00 Y=00 S=EO
00/ 2000: A9 00

{set the program counter}

MEOA L=0 P=--1-----
LDA #00

: ST {invoke the step conmmand}

A=00 X=00 Y=00 S=EO
00/ 2002: 85 06

T: {Press "Return"
A=00 X=00 Y=00 S=EO
00/ 2004: A9 30

T:

A=30 X=00 Y=00 S=EO
00/ 2006: 85 07

T:

A=30 X=00 Y=00 S=EO
00/ 2008: A0 01

T:

A=30 X=00 Y=01 S=EO
00/ 200A: B1 06

T:

A=00 X=00 Y=01 S=EO
00/ 200C: AA

etc.

Not e! Renmenber al
hexadeci mal format.
enter the command
nunbers.

instructions (E.G 10 =

TR [N] - TRACE

The TRACE conmand is identica
i nformation di splayed. The TRACE command does not

contents.
traci ng.

TS A -

The TRACE W TH SUBROUTI NE command is the npst fl exible of al

commands.

"ST 110".

M=QA L=0 P=--1---2Z-
STA 06 { next

{this instruction wll

be traced

{A =00 and Z flag set
instruction to be stepped

to trace the STA 06 instruction}

MEOA L=0 P=--1---Z-
LDA #30

MEOA L=0 P=--1-----

STA 07
MEOA L=0 P=--1-----
LDY #01
MEOA L=0 P=--1-----

LDA (06),Y {003001

MEOA L=0 P=--1---Z-
TAX

$10 =

This is done to allow nore program steps to fit

TRACE W TH SUB

{A = 30 and Z cl eared

{Y = 01
{effective address $3001

{ $3001 was 00

nunbers input to the ProDev DDT are assuned to be in
If you wanted to step 10 deci nal
The exclamati on poi nt
If you entered the conmand "ST 10" you would step the next
16 decimal).

i nstructions,
nmust precede al

to the step conmand in operation except for the
di splay the register
on the screen while

executed after each instruction of the target program The target

"esc" will cancel

Your subroutine may be placed anywhere in system RAM t hat
program The | ocation of your subroutine is indicated by "A"

t ar get

i's not

6- 2

you woul d

16 deci nal

t he ProDev DDT's
This command allows you to wite your own subroutine that
programis
st opped when your testing subroutine returns with the Carry flag set.
t he conmand.

used by the

in the command description and is nandatory. Your subroutine lets the ProDev
DDT know when you wi sh to stop the target program by setting the CARRY fl ag
(C=1) of the processor status register. When the ProDev DDT sees that your
test subroutine has set the CARRY flag, it stops the target program and gives
you control. Al of the processor registers are available for use in your
subroutine, without fear of affecting the operation of the target program You
shoul d not use menory |ocations as storage unless you are absolutely sure the
target program does not use them Several exanples of test subroutines are
given in Chapter 9.

| MPORTANT! Make sure the program counter is properly set before entering the
TRACE W TH SUB conmand. The target programwi |l begin execution at the current
| ocation of the program counter as soon as the command is entered.

{DDT16} Bank numbers may be specified for the test subroutine. Your test
subroutine is entered via "JSL" and must end with "RTL".

EXAMPLE

Use the TRACE WTH SUB command to determ ne when menory | ocation $3002 reaches
a val ue of $80, when executing the program described with the M ni-Assenbler
comand.

Use the M ni-Assenbler to enter the followi ng test subroutine at nenory
| ocati on $2800.

2800- LDA $3002 ;load the accurmulator with | ocation $3002
2803- CVP #$80 ;has | ocation $3002 reached $80 yet?
2805- BEQ $280B ;it is $80, set CARRY and | eave

2807- CLC ;not $80 yet, clear the CARRY fl ag

2808- BCC $280B ; and return

280A- SEC ;yes it is $80 so set the CARRY flag
280B- RTS ;return to the ProDev DDT

:PC= $2000 {Set the program counter to a good | ocation}
: TS 2800 {Now enter the TRACE WTH SUB command. }

A=00 X=80 Y=01 S=EO0 M-OA L=0 P=N-1-----

00/ 2010: E8 I NX

The target programwas interrupted when |ocation $3002 reached $80. To verify
this, use the MEMORY MODI FY conmand to exami ne | ocation $3002.

: MM 3002

00/ 3002: 80 {nenory |ocation $3002 does contain $80}

As you can see the possible uses for this command are practically limtless.
Not e! The execution tinme of the target programw |l be increased when using
this command. This is caused by the added steps required to save all the
regi sters after each instruction of the target programand by the tine

required to run your subroutine. So don't be too alarmed if it takes a few
seconds before the programis stopped.

6- 3

EX [N] - EXECUTE

The EXECUTE command is very sinmilar to the TRACE conmand with one obvi ous
exception. The processor registers are displayed only after the | ast

i nstruction has been executed. For exanple, if you entered the comand "EX 1"
it would be the sane as entering the TRACE conmand "TR or TR 1". However, if
you enter the command "EX !'10", then the next 9 instructions of the program
woul d be executed with nothing being displayed and only after the tenth

i nstruction was executed woul d the processor registers be displayed. This
greatly increases the speed with which the programis executed and makes it
nore convenient to run through | arge sections of code.

If you invoke the EXECUTE command with N =0 (E.G EX 0) the target program
will continue to execute until you stop it. Pressing the pause "KEY" (default
is <ctrl>-S) will pause the execution of the programuntil another key is
pressed. Wil e paused, pressing "esc" will stop the program from executing and
cancel the EXECUTE command.

This command can be very useful for debuggi ng graphic ani mati on routines. Wen
i nvoked, the target programwi |l execute at a much sl ower speed, thereby

all owi ng you to see the animation steps as they proceed and to stop the target
program at any point. This can also be useful if you wish to exanine the

met hods used by other prograns to performtheir aninmation

xxx SPECI AL NOTE ***
The ProDev DDT was never intended to be used as a tool for copying protected
software or to break copy protection codes. Any use of the ProDev DDT for
t hese purposes may be illegal and is not pronmpted or supported by ProDev in
any way.

EXAMPLE

: PC= $2000 {position the program counter}

tEX 110 {execute the next 10 decimal instructions}
A=00 X=01 Y=01 S=EO0 M=OA L=0 P=--1-----

00/ 200D: 8E 02 30 STX 3002

T: {Ten instructions were executed and the program was stopped

ER - EXECUTE TO RTS

The EXECUTE TO RTS command will cause the target programto begin executing at
the current program counter |ocation and continue until an RTS instruction is
found. This can be very useful when you are tracing a programin which you
know t he subroutines work properly.

| MPORTANT! Make sure the program counter is properly set before entering the

EXECUTE TO RTS command. Your programwi |l begin execution at the current
| ocation of the program counter as soon as the comand is entered.

6- 4

EXAMPLE
Use the subroutine described in the TRACE WTH SUB conmand.

: PC= 2800 {set the program counter}

:ER

A=00 X=01 Y=01 X=EO M=OA L=0 P=N-1-----

00/ 2809: 60 RTS

T: {the programruns until the RTS is found}

Not e! Subroutines may be called fromw thin subroutines, in which case, the
ProDev DDT will stop at the 1st RTS/RTL it sees. Sinply enter "ER' to continue
to the next RTS/ RTL.

ET A A - EXECUTION TI ME

The EXECUTI ON TI ME command di spl ays the number of clock cycles required to
execute the code between two inclusive addresses. The command activates a

har dwar e device on the ProDev DDT card which actually runs the specified code
and counts the nunber of clock cycles required. The counter has a lint of
$FFFF or 65,535. If this linmt is exceeded the counter will start over at
$0000.

The addresses may not contain a bank nunber.

{DDT8} The various bank switches will be used to determ ne the bank of the
instructions. In other words, if you enter the command "ET 800. 802" and you
have set the nenory switches to read from AUX nenory, the execution time wll
be performed on the instructions in auxiliary menory from $800 to $802

i ncl usi ve.

{DDT16} The current program bank will be used.

This command can be very useful for witing delay |oops and for witing tine
critical code. The output is in the formof the number of clock cycles
required to execute the code. To nmake a fairly accurate conversion to
seconds, nultiply the number of clock cycles by 0.9775 E -06 (0.0000009775).

{DDT16} This command should only be used with the system clock set to NORVAL
(1Mhz). If the systemclock is set to FAST then "(x ~2.6) w |l be displayed
along with the nunber of NORMAL (1Mhz) clock cycles that were required. (X
~2.6) indicates that the number of FAST clock cycles required is approxi mtely
2.6 times the nunmber of NORMAL cl ock cycles displayed

* ADVANCED NOTE

The 1Mhz system cl ock of the Apple conmputer does not have a constant period of

977.5 nS. The clock cycles are periodically extended by approxi mately 140nS.
These extended cl ock cycles nust be taken into account if you are trying to
devel op an extrenely accurate software tine base. The ProDev DDT does not
treat these extended clock cycles any differently than the standard cl ock
cycle. There are quite a few good books on Apple hardware which describe the
systemtinmng and we will not attenpt to do so here.

6-5

EXAMPLE

Referring to the program whi ch we previously described in the TRACE WTH SUB
command at address $2800.

How many cl ock cycles are required to execute the LDA $3002 instruction at
addr ess $28007?

: ET 2800. 2800
CLOCK CYCLES = $0004 {four clock cycles required}

How many cl ock cycles are required to execute the program from address $2800
inclusive to address $2809 incl usive?

: ET 2800. 2809
CLOCK CYCLES = $0011 {$11 or 17 clock cycl es required}

RT - REAL TI ME

If the current instruction is a "JSR' then execute the programin real -tine
until the instruction following the "JSR' is reached. This command is sinmply a
one time version of the T range as described previously in the Protection

W ndow description. The instruction follow ng the "JSR' nust reside in RAM so
a break can be automatically placed there to halt the programafter the

real -time execution of the subroutine. This instruction also works with the
speci al case of a ProDOS8 & ProDOS16 M.l call by placing the break beyond the
M.I paraneters. If you are using a sinilar technique for paraneter passing
then the "RT" or "T range" commands shoul d not be used.

{DDT16} Also works with "JSL" "RTL" when in native nbde. DO NOT use "RT" or
"T" range commands with a JSR when in enul ati on node.

EXAMPLE

If the current instruction is:

00/2000: 20 DD FB JSR FBDD
Entering the command "RT" will result in the subroutine at $FBDD being
executed in real-tine. In this case $FBDD is the Apple ROM s ring bel
routine. The bell will ring and control will be returned to the ProDev DDT at
the instruction followi ng the JSR

00/ 2003: EA NOP or whatever
down - SKI P THE CURRENT | NSTRUCTI ON
Pressing the "down arrow' when in the "Trace" node will cause the current

instruction to be skipped. The word "SKIP" is displayed and the program
counter is automatically positioned at the next instruction

6- 6

TRACI NG PROGRAMS | N OTHER PERI PHERAL CARDS

The ProDev DDT will trace prograns in other peripheral cards as long as the
card does not use a bank switching schene to fit nore than 2K bytes in the 2K
ROM space. The best way to find out if it works is to try it and see. The sl ot
nunber of the other peripheral card should be in menory | ocation $7F8. Enter
the ProDev DDT by pressing the button.

TRACI NG PROGRAMS | N the $C800 - $CFFF MEMORY SPACE.

The $C800 - $CFFF nenory space is shared by all the peripheral cards and is
reserved for their use (The Apple also uses this space). If you wish to trace
a programon a peripheral card which resides in this space it is necessary to
take the followi ng steps:

a) Set the nmenory location $7F8 (MSLOT) to the nunber $Cn of the card being
traced.

b) Use the "GO' conmmand to run a "do nothing" program (E. G $2000 JMP $2000).
c) Now press the BUTTON | NTERRUPT. This saves the $Cn nunber of $7F8 (the

active peripheral card) to the ProDev DDT's RAM This is the card the ProDev
DDT will access when told to access $C800 - $CFFF nmenory space.

6-7

6- 8

CHAPTER 7
EXIT

QUi t

"QUit" exits the ProDev DDT. The Quit command assunes the ProDev DDT was
entered with a "JSR' and exits via an "RTS" instruction. If you entered the
ProDev DDT fromthe systemmonitor with "Cn00G', entering a Quit comand wil |
return you to the systemnonitor. If any Real breaks remain in the programa
war ni ng nessage, "REAL BRKS IN', will be displayed.

Do NOT use the "QU' command if you have entered the DDT via the "Button". Wen
you enter the DDT via the "Button" no return address is available on the stack
for the "QU' command to use.

When you exit via the Quit command, the ProDev DDT renains active and wll
interpret any breaks that occur.

GO TO MONI TOR

--{DDT8} - -
** . GO TO MONI TOR

The command "**" places you in the Apple's nonitor where you may use any
of the nonitor commands. Use <ctrl>Y to reenter the DDT.

- - {DDT16} - -
** [1,C - GO TO MONI TOR

"**" places you in the Apple's nonitor where you nay use any of the
nmoni tor conmmands. Use <ctrl>Y to reenter the DDT. Fromthe nonitor you may
enter the control panel to nake changes of use CDAs.

"**]" disables interrupts before entering the monitor

"**C" disables interrupts and enabl es "C oaking" before entering the
nmonitor. The ONLY way to reenter the DDT after enabling cloaking is with the
"Button". Cloaking does a hardware wite protect of the DDT. In its wite
protected node the DDT is not vul nerable to program crashes that m ght
otherw se disable it by inadvertently witing to the cards nenory space.

The DDT16 uses the][GS vector at $00/03FB. If this 3 byte junp is trashed
then pressing the DDT "Button" will do unpredictable things.

"**" command sunmary.

mEE - G to nonitor, interrupts on, ~Y enabled. {DDT8 or DDT16}

"** |" - Go to nonitor, interrupts off, ~Y enabled. (DDT16}

"** C' - Go to nonitor, interrupts off, ~Y disabled, C oaking on. {DDT16}

If any Real breaks remain in the programa warni ng nmessage, "REAL BRKS | N',
will be displayed. This is to remi nd you not run the program The

breaks would not be interpreted by the ProDev DDT. To clear the Real breaks,
use <ctrl>Y or press the "Button" to return to the ProDev DDT and use the "RA"
or "RB [A]" comand. You nmay now use "**" to reenter the system nonitor.

7-1

7-2

CHAPTER 8
TALKI NG TO THE WORLD

PRI NTER OQUTPUT

Wth the ProDev DDT it is possible to use your printer as an output device.
This can be done to obtain a hard copy of the screen information or to all ow
you to view graphics on the screen while still being able to debug your
program

The printer interface nust be in slot #1 and nmust support the Pascal vl1.1
protocol. Myst printer interface and serial cards should work. See the "M
node command for selecting printer 1/0O

{DDT16 - \Wen using the I1GS printer port, set the baud rate via the contro
panel settings}.

REMOTE TERM NAL

Using a renote termnal with the ProDev DDT is al so possible. The seria
interface nust be in slot #2 and nmust support the Pascal v1.1 protocol. Sel ect
the desired baud rate by following the instructions supplied with your
interface card. If you are using a Super Serial Card or equivalent, use the
switches to set the baud rate & data size. W recommend the follow ng switch
settings for 9600 baud operation on the SSC

swi. DDDUUUU sw2 UUUUDXxD

{DDT16 - When using the I1GS serial port, set the baud rate via the contro
panel settings}.

The ProDev DDT does not support error checking. Operation may be unreliable at
very high baud rates. |If you experience any conmuni cations problenms, try using
t he next |owest baud rate. W have found operation at 9600 baud to be very
reliable.

When you are operating the ProDev DDT froma terminal you will not see the
wi ndowed di splay on the termi nal screen. The information displayed to the
termnal is the sane information that would normally appear in the main

di spl ay wi ndow. The Serial I/O node is activated fromthe Mde nenu (See MO
command) .

O her conmputers nmake great terminals. All you need is a serial interface and
sone type of terninal software. Modst nmodem software will work. The][GS even
has built in termnal enulation that will work. We prefer to use npdem
software that has a scroll back buffer. This allows you to scan back through
instructions that you have already traced in case you m ssed sonething.

Use the foll owing cormands if you want to use the][GS built

emul ation. From a basic pronpt type the follow ng:

] IN #2 <cr> Note! No return on the follow ng lines
<ctrl >AT this starts tern nal npde

<ctrl| >Al14B 9600 baud

<ctrl| >AMVE mask |ine feeds

<ctr | >ABE buf f er enabl e

<ctrl| >AED echo di sabl e

8-2

in term na

CHAPTER 9
CUSTOM ZI NG

CUSTOM ZI NG THE { DDT8}

MEMORY LOCATI ONS FOR DDT8

n = Sl ot nunber of ProDev DDT card

$Cn00 = Initialize and enter the ProDev DDT.
$Cn03 = Initialize the ProDev DDT and do an RTS.
$Cn24 = Warmstart entry into ProDev DDT.

LOCATI ONS | NSI DE ProDev DDT RAM

Where your programs registers are saved.

$C811 = Accunul at or

$C813 = X i ndex

$C815 = Y i ndex

$C817 = Stack Pointer

$C81A = Processor Status

$C81B = Program counter (Low byte)
$CB81C = Program counter (H byte)
$C81D = Bank nunber

ProDev DDT8 FLAGS

$CB1lE DS 1 ;"Text screen save": 0= off, bit 7=1= on

$CB81F DS 1 ; CPU type: 0= 6502, bit 7=1= 65C02, bit 6=1= 65802
$C820 DS 1 ;1/0O node: O= normal, bit 7=1= serial, bit 6=1= printer
$C821 DS 1 ;bit 7=1= don't send DDT output to screen

You can use the following "start up" programto initialize the above FLAGS to
your preference. Sinply nodify the programto provide the setup you desire.

ESE R I R R R R R R I R R R R R R R R R I R R R R R

* ProDev DDT8 setup program *

* *

* replace "n" with the slot nunber of the ProDev DDT8 card. *

EE R I R R R R R R R R R R R R R I R I R R I R I R R R R

DDT8I N2 EQU $Cn03 ;Enter here to initialize the DDT8
CARDOFF EQU $CFFF ; Di sabl e the peripheral cards 2K ROVs.
TEXTSAVE EQU $CB1E ; Text screen save
CPUTYPE EQU $C81F ; CPU, $00=6502, $80=65C02, $40=65802
| OMODE EQU $C820 ,I/O $00=Screen, $80=Serial, $40=Printer
DI SPLAY EQU $C821 ; DDT8 di splay On/OFf switch, $80 = Of
I NI TDDT8 BIT CARDOFF ; Disabl e all peripheral cards 2K ROVs
JSR DDT8I N2 ;lnitialize DDT8 and return.
BIT $Cn00 ; Enabl e DDT8 card.

* Set the Text screen save npde

LDA #0 ; Turn screen save off
STA TEXTSAVE ;Set the flag

Sel ect the CPU
LDA #$80 ; CPU type 6502
STA CPUTYPE ;Set the flag

Sel ect serial 1/0
STA | OMODE :Set for serial 1/0

* Turn the display off. This will prevent the ProDev DDT from

changi ng the screen display of the target program which is nice
during serial |/O operation
STA DI SPLAY ; Turn display off

* The following two |ines have the same effect as |eaving the

ProDev DDT via the "*" command

LDA #$DC ;lgnore interrupts & wite protect DDT8
STA $C80C ;Talk directly to the VIA chip
RTS ; Setup routine finished

SUBROUTI NES FOR " TRACE W TH SUBROUTI NE" COMVAND

"Bcc" - refers to any valid branch instruction.

TEST A BYTE I N MEMORY

TESTMEM LDA $ADDRESS ; get contents of location to test

CWP #$val ue ;conpare to sone val ue
Bcc STOP ;the condition was net so stop the program
CLC ;condition not met, clear the CARRY flag
BCC LEAVE ; and | eave.
STOP SEC ;set the CARRY flag to stop the program
LEAVE RTS ;return to ProDev DDT

TEST THE ACCUMULATCR

TESTACC CWP #$val ue ;conpare to some val ue

Bcc STOP ;the condition was met so stop the program
CLC ;condition not nmet, clear the CARRY flag
BCC LEAVE ; and | eave.
STOP SEC ;set the CARRY flag to stop the program
LEAVE RTS ;return to ProDev DDT

TEST THE X | NDEX

TESTX CPX #$val ue ;conpare to some val ue

Bcc STOP ;the condition was met so stop the program
CLC ;condition not nmet, clear the CARRY flag
BCC LEAVE ; and | eave.
STOP SEC ;set the CARRY flag to stop the program
LEAVE RTS ;return to ProDev DDT

9-2

TEST THE Y | NDEX

TESTY

STOP
LEAVE

CPY #$val ue ;conpare to sone val ue

Bcc STOP ;the condition was net so stop the program
CLC ;condition not met, clear the CARRY flag
BCC LEAVE ; and | eave.

SEC ;set the CARRY flag to stop the program

RTS ;return to ProDev DDT

TEST THE STACK PO NTER

TESTSP TSX ;transfer the stack pointer to X index
I NX ;
I NX ;correct for the JSR to your subroutine
CPX #$val ue ;conpare to sone val ue
Bcc STOP ;the condition was net so stop the program
CLC ;condition not met, clear the CARRY flag
BCC LEAVE ; and | eave.
STOP SEC ;set the CARRY flag to stop the program
LEAVE RTS ;return to ProDev DDT

TEST THE LOW BYTE OF THE PROGRAM COUNTER

TESTPC CLC ;clear CARRY flag
LDA $C816 ;get low byte of pc from DDT8 RAM
CWP #$val ue ;conpare to sone val ue
Bcc STOP ;the condition was net so stop the program
CLC ;condition not met, clear the CARRY flag
BCC LEAVE ; and | eave.
STOP SEC ;set the CARRY flag to stop the program
LEAVE RTS ;return to ProDev DDT

TEST THE PROCESSCOR STATUS REG STER

TESTPS CLC ;clear CARRY flag
LDA $C815 ;get the status register contents from DDT8
CWP #$val ue ;conpare to sone val ue
Bcc STOP ;the condition was met so stop the program
CLC ;condition not nmet, clear the CARRY flag
BCC LEAVE ; and | eave.
STOP SEC ;set the CARRY flag to stop the program
LEAVE RTS ;return to ProDev DDT

9-3

CUSTOM ZI NG THE {DDT16}
MEMORY LOCATI ONS FOR DDT16

n = Sl ot nunber of ProDev DDT card

$Cn00 = Initialize and enter the ProDev DDT.
$Cn04 = Initialize the ProDev DDT and do an RTS.
$Cn08 = Warmstart entry into ProDev DDT.

LOCATI ONS | NSI DE ProDev DDT16 RAM

--- Where your program s registers are saved ---

$C811 DS 2 ; A
$C813 DS 2 ;X
$C815 DS 2 ;Y
$C817 DS 2 ;S
$C819 DS 2 ;D
$C81B DS 1 ;B
$C81C DS 1 ; M
$C81D DS 1 ;Q
$C81E DS 1 ;P
$C81F DS 1 ; PC | ow byte
$C820 DS 1 ; PC hi byte
$C821 DS 1 ; PBR Program Bank Regi ster
--- DDT16 flags ---
$CB822 DS 1 ;"Text screen save": 0= off, bit 7=1= on
$C823 DS 1 ; CPU type: 0= 6502, bit 7=1= 65C02, bit 6=1= 65816
$C824 DS 1 ;1/0O node: 0= normal, bit 7=1= serial, bit 6=1= printer
$C825 DS 1 ;bit 7=1= don't send DDT output to screen
$C826 DS 1 ;BIT 7=1= normal entry, bit 7=0 do RTS after DDT init

You can use the following "start up" programto initialize the above FLAGS to
your preference. Sinply nodify the programto provide the setup you desire.

ESE R I R R R R R R R R R R R R R R R R I R R R R R R

* ProDev DDT16 setup program *
* *
* replace "n" with the slot nunmber of the ProDev DDT card. *
* Call in enulation node. *

EIE R I S R R R R R R R R I R R R R R R I R R R I R R R R

DDT161 N EQU $Cn04 ;Enter here to initialize the DDT16
CARDOFF EQU $CFFF ; Di sabl e the peripheral cards 2K ROMs.
TEXTSAVE EQU $C822 ; Text screen save
CPUTYPE EQU $C823 ; CPU, $00=6502, $80=65C02, $40=65816
| OMODE EQU $C824 ; 1/ 0 $00=Screen, $80=Serial, $40=Printer
DI SPLAY EQU $C825 ; DDT display On/OFf switch, $80 = Of
| NI TDDT BIT CARDOFF ; Disabl e all peripheral cards 2K ROVs
JSR DDT16I N ;lnitialize DDT and return.
BIT $Cn00 ; Enabl e DDT card.

9-4

* Set the "Text screen save" npde
STZ TEXTSAVE ; Turn screen save off

* Select the CPU
LDA #$80 ; CPU type 65C02
STA CPUTYPE ;Set the flag

* Select serial 1/0
STA | OMODE :Set for serial 1/0

* Turn the display off. This will prevent the ProDev DDT from
changi ng the screen display of the target program
STA DI SPLAY ; Turn display off

* The following two |ines have the same effect as |eaving the
ProDev DDT via the "**" comrand

LDA #$DC ;lgnore interrupts & wite protect DDT8
STA $C80C ;Talk directly to the VIA chip
RTS ; Setup routine finished

SUBROUTI NES FOR "TRACE W TH SUBROUTI NE' COMMAND
"Bcc" - refers to any valid branch instruction.

The DDT16 calls "TS" routines in 16 bit native node with the foll ow ng
regi ster contents:

targets Accunul at or

target's X

target's Y

target's status with =1 to prevent interrupts.
$0000

$EO

WO U<X>

The direct page register "D' & data bank register "B" nmust be preserved by
your subroutine

TEST A BYTE I N MEMORY

TESTMEM LDA $ADDRESS ; get contents of location to test

CWP #$val ue ;conpare to some val ue
Bcc STOP ;the condition was met so stop the program
CLC ;condition not met, clear the CARRY flag
BCC LEAVE ; and | eave.
STOP SEC ;set the CARRY flag to stop the program
LEAVE RTL ;return to ProDev DDT

TEST THE ACCUMULATCR

TESTACC CWP #$val ue ;conpare to some val ue

Bcc STOP ;the condition was met so stop the program
CLC ;condition not nmet, clear the CARRY flag
BCC LEAVE ; and | eave.
STOP SEC ;set the CARRY flag to stop the program
LEAVE RTL ;return to ProDev DDT

9-5

TEST THE X | NDEX

TESTX

STOP
LEAVE

CPX #$val ue ;conpare to sone val ue

Bcc STOP ;the condition was net so stop the program
CLC ;condition not met, clear the CARRY flag
BCC LEAVE ; and | eave.

SEC ;set the CARRY flag to stop the program

RTL creturn to ProDev DDT

TEST THE Y | NDEX

TESTY

STOP
LEAVE

CPY #$val ue ;conpare to sone val ue

Bcc STOP ;the condition was net so stop the program
CLC ;condition not met, clear the CARRY flag
BCC LEAVE ; and | eave.

SEC ;set the CARRY flag to stop the program
RTL ;return to ProDev DDT

TEST THE STACK PO NTER

TESTSP TSX ;transfer the stack pointer to X index
I NX ;
I NX ;correct for the JSR to your subroutine
CPX #$val ue ;conpare to sone val ue
Bcc STOP ;the condition was net so stop the program
CLC ;condition not met, clear the CARRY flag
BCC LEAVE ; and | eave.
STOP SEC ;set the CARRY flag to stop the program
LEAVE RTL ;return to ProDev DDT

TEST THE LOW BYTE OF THE PROGRAM COUNTER

TESTPC CLC ;clear CARRY flag
LDA $C81F ;get | ow byte of pc from DDT RAM
CVP #$val ue ;conpare to sone val ue
Bcc STOP ;the condition was net so stop the program
CLC ;condition not nmet, clear the CARRY flag
BCC LEAVE ; and | eave.
STOP SEC ;set the CARRY flag to stop the program
LEAVE RTL ;return to ProDev DDT

TEST THE PROCESSOR STATUS REG STER

TESTPS CLC ;clear CARRY flag
LDA $C81E ;get the status register contents from DDT
CWP #$val ue ;conpare to some val ue
Bcc STOP ;the condition was met so stop the program
CLC ;condition not met, clear the CARRY flag
BCC LEAVE ; and | eave.
STOP SEC ;set the CARRY flag to stop the program
LEAVE RTL ;return to ProDev DDT

9-6

APPENDI X A
IT DON' T VORK!

NEW | NSTALLATI ON
Go through the installation instructions again and repeat each step

Check for physical damage to the ProDev DDT board or for IC s which may have
becore | oose during shipnent.

Try a different slot in the conputer.

Try renoving any other peripheral cards fromthe conputer. Sone periphera
cards may interfere with the ProDev DDT's operation. Accel erator cards may not
be in use at the sanme tine as the ProDev DDT is active.

{DDT8} The Titan Technol ogi es Accelerator //e suffers froman apparent design
probl em and may not be present in the conmputer at the sanme time as the ProDev
DDT.

If it still doesn't work, contact ProDev for assistance. (See the |ast page of
this manual).

P11l PLEASE, DO NOT RETURN THE PRODUCT TO ProDev UNLESS WE SPECI FI CALLY
DI RECT YOU TO DO SO. !'tIit]

I T DD VWORK

Sonetimes the connectors will get dirty and | ose contact. Try renmoving the
card and reinstalling it again. You nmight also use a pencil eraser to gently
clean the gold plated connectors. (Make sure the conputer power is off and you
follow the procedure for installing as outlined in this manual)

JUST ADDED A NEW PERI PHERAL

Have you just installed a new peripheral card? If so, it may be interfering
with the operation of the ProDev DDT. Try renoving the newy installed
peri pheral card.

RESET WHEN DDT | S ACTI VE?

Reseting your conputer when the DDT is waiting for input or when you are
tracing code will disable the DDT. Reseting while tracing code may result in a
"l ocked up" condition

If a "Locked up" condition occurs while using the DDT, take the follow ng
steps if you wish to avoid powering down your system

Reset your system & try to start the DDT via $Cn00G

If the DDT fails to start, repeat the above procedure and this tine hold
down the "DDT Button" while doing $Cn00G It may be necessary to repeat the
above procedure several tines.

If you are unable to restart the DDT then it will be necessary to turn off
your conputer for at |east 15 seconds.

| F SERVI CE | S NEEDED

We support what we sell! If service is required we will provide it for a
reasonabl e fee. The Technical Support staff will notify you of our current
repair rates and provide you with instructions for shipping your ProDev DDT
board. See the |ast page of this manual for the address and tel ephone nunber.

APPENDI X B
GENERAL COMMENTS

{DDT8 65802}

The 65802 node is not fully supported at this time. The effective addresses of
t he 65802' s uni que addressing nodes are not all properly calculated for
display in the effective address w ndow.

{ DDT8 MOUSE}

The ProDev DDT will allow tracing of prograns that nake use of the Appl eMbuse
/1 if the nmouse is used in passive nbde only. W used the sanple programthat
appears in Appendix B of the "Appl eMouse // User's Manual" as a genera
conpatibility test. If you encounter any problens please |et us know.

STACK

The ProDev DDT generates interrupts and uses the systenm s host processor
Since the 6502 has only one stack pointer, it is difficult to |eave the stack
RAM undi st urbed. We have gone to great lengths to preserve the integrity of
the system stack. In nost applications you should not encounter any stack
problems. If your program sw tches between the Main nenmory stack and the

Auxi liary menmory stack and/or does mani pul ation of the stack pointer with the
"TXS" instruction you may encounter undesired changes in the stack RAM The
best way to preserve the systemstack is to do tracing or executing and avoid
real -time running of your program I|f you experience problenms of this type,

pl ease report them as you would any bug. The nore information we collect the
better our chances of reducing the problem

BUGS

No, not the cartoon rabbit. Please don't assume that bugs you encounter are so
obvi ous that we nust already know about them You woul d be amazed at how blind
we can be to the obvi UGCs.

APPENDI X E
ERROR NUMBERS

The following is a table of error numnbers:

ERROR # DEFI NI TI ON

01 Invalid cormand - Check the nmenu for proper command
synt ax.

02 Addr ess expected - This command nust be foll owed by an
address (sonme commands require an address range).

03 Nunber expected - This command expects a nunber paraneter.

04 Bad command paraneter - This may include mssing or
i ncorrect addresses, nunbers or synbols.

05 Il egal bank selected - An invalid address bank was
entered.

10 No room for additional Breakpoints - Use "RB A" to renpove

an ol d breakpoint.

20 Command will not work in ROM - This command tried to wite
to a location that did not allow a wite.

30 "RT" or "T range" JSL while in enulation node - A JSL nmay
not be used as part of an "RT" or "T range" operation while in enulation node.
{ DDT16}

TO THE USER

We wel cone your comments or suggestions about this product.

Pl ease help stop illegal software pirating. Remenber, every dollar of revenue
lost to software pirates is made up in higher prices to the rest of us.

TECHNI CAL SUPPORT

Pl ease contact us by tel ephone, U S. mail or Email if you have any technica
guesti ons concerning the operation of this product.

Attn: DDT Tech Support
ProDev, Inc.

P. 0. Box 162

LaSalle, M 48145-0162

(313) 848-4012 voice/fax

24 hour answering machi ne operation. Leave a very brief description of the
probl em your name, phone nunber, and the best time for us to return your
call.

Try calling between 10:00 am & 8:00 pm M F Eastern Time if you hate talking to
machi nes.

Internet - <info@rodev.biz>

Apple, Apple Il, Apple //e and Apple I1GS are registered trademarks of Apple
Comput er, Inc.

Accel erator //e, and Titan are trademarks of Titan Technol ogi es, Inc.
Ramwor ks is a trademark of Applied Engineering, Inc.

Speci al thanks to all the people who made this product possible, including our
beta testers & | oyal custoners.

