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1 Introduction 
ABEL (Advanced Boolean Equation Language) allows you to enter behavior-like descriptions of a logic circuit. 
ABEL is an industry-standard hardware description language (HDL) that was developed by Data I/O Corporation for 
programmable logic devices (PLD). There are other hardware description languages such as VHDL and Verilog. 
ABEL is a simpler language than VHDL which is capable of describing systems of larger complexity. 

ABEL can be used to describe the behavior of a system in a variety of forms, including logic equations, truth tables, 
and state diagrams using C-like statements. The ABEL compiler allows designs to be simulated and implemented into 



PLDs such as PALs, CPLDs and FPGAs.  

Following is a brief overview of some of the features and syntax of ABEL. It is not intended to be a complete 
discussion of all its features. This ABEL primer will get you started with writing ABEL code. In case you are familiar 
with ABEL, this write-up can serve as a quick reference of the most often used commands. For more advanced 
features, please consult an ABEL manual or the Xilinx on-line documentation.  

2. Basic structure of an ABEL source file 
An ABEL source file consists of the following elements. 

Header: including Module, Options and Title  
Declarations: Pin, Constant, Node, Sets, States. Library.  
Logic Descriptions: Equations, Truth-table, State_diagram  
Test Vectors: Test_vectors  
End  

Keywords (words recognized by ABEL such as commands, e.g. goto, if, then, module, etc.) are not case sensitive. 
User-supplied names and labels (identifier) can be uppercase, lowercase or mixed-case, but are case-sensitive (input1 
is different from Input1). 

A typical template is given below.  

module module name 

[title string]  

[deviceID device deviceType;]  

pin declarations  

other declarations  

equations  

equations  

[Test_Vectors]  

test vectors  

end module name 

The following source file is an example of a half adder: 

module my_first_circuit;  
title 'ee200 assignment 1'  
EE200XY device 'XC4003E';  
   
  

" input pins  
A, B pin 3, 5;  



" output pins  
SUM, Carry_out pin 15, 18 istype 'com';  

equations  

SUM = (A & !B) # (!A & B) ;  
Carry_out = A & B;  

end my_first_circuit;  
   
  

A brief explanation of the statements follow. For a more detailed discussion see the following sections or consult an 
ABEL-HDL manual. When using ABEL with the Xilinx CAD software, you can use the ABEL wizard which will 
give a template of the basic structure and insert some of the keywords. Also the Language Assistant in the ABEL 
editor provides on-line help. Go to the TOOLS ->LANGUAGE ASSISTANT menu. The Language templates give a 
description of most ABEL commands, syntax, hierarchy, etc, while the Synthesis template gives examples of typical 
circuits. 

3. Declarations 
Module: each source files starts with a module statement followed by a module name (identifier). Large source files 
often consist of multiple modules with their own title, equations, end statement, etc. 

Title: is optional and can be used to identify the project. The title name must be between single quotes. The title 
line is ignored by the compiler but is handy for documentation.  

String: is a series of ASCII characters enclosed by single quotes. Strings are used for TITLE, OPTIONS statements, 
and in pin, node and attribute declarations.  

device: this declaration is optional and associates a device identifier with a specific programmable logic device. 
The device statement must end with a semicolon. When you are using the Xilinx CAD system to compile the design, 
it is better not to put the device statement in the source file to keep your design independent of the device. When you 
create a new project in Xilinx you will specify the device type (can also be changed in the Project Manager window 
using the Project Information button). The format is as follows:  

device_id device 'real_device'; 

Example: MY_DECODER device 'XC4003E';  
   
  

comments: comments can be inserted anywhere in the file and begin with a double quote and end with another double 
quote or the end of the line, whatever comes first. 

pin: pin declarations tell the compiler which symbolic names are associated with the devices external pins. Format:  

[!]pin_id pin [pin#] [istype 'attributes'] ; 

One can specify more than one pin per line: 

[!]pin_id , pin_id, pin_id pin [pin#, [pin#, [pin#]]] [istype 'attributes']; 



Example:  

IN1, IN2, A1 pin 2, 3, 4;  

OUT1 pin 9 istype 'reg';  

ENABLE pin;  

!Chip_select pin 12 istype 'com';  

!S0..!S6 pin istype 'com';  
   
  

You do not need to specify the pin. Pin numbers can be specified later by using a "user constraint file " when doing 
the compilation using Xilinx CAD. This has the advantage that our design is more general and flexible. The ! 
indicates an active low (the signal will be inverted). The istype is an optional attribute assignment for a pin such 
as 'com' to indicate that the output is a combinational signal or 'reg' for a clocked signal (registered with a flip flop). 
This attribute is only for output pins. 

node: node declarations have the same format as the pin declaration. Nodes are internal signals which are not 
connected to external pins.  

Example: 

tmp1 node [istype 'com'];  
   
  

other declarations allows one to define constants, sets, macros and expressions which can simplify the program. As 
an example a constant declaration has the following format: 

id [, id],... = expr [, expr].. ; 

Examples:  

A = 21;  

C=2*7;  

ADDR = [1,0,11];  

LARGE = B & C;  

D = [D3, D2, D1, D0];  

D = [D3..D0]; 

The last two equations are equivalent. The use of ".." is handy to specify a range. The last example makes use of 
vector notations. Any time you use D in an equation, it will refer to the vector [D3, D2, D1. D0]. 

4. Numbers 



Numbers can be entered in four different bases: binary, octal, decimal and hexadecimal. The default base is decimal. 
Use one of the following symbols (upper or lower case allowed) to specify the base. When no symbol is specified it is 
assumed to be in the decimal base. You can change the default base with the Directive "Radix" as explained in the 
next section.  
  

Examples:  
  

5. Directives 
Directives allow advanced manipulation of the source file and processing, and can be placed anywhere needed in a 
file. 

@ALTERNATE  
Syntax  
@alternate  
   
@ALTERNATE enables an alternate set of operators. Using the alternate operator set precludes use of the ABEL-
HDL addition (+), multiplication (*) and division (/) operators because they represent the OR, AND and NOT logical 
operators in the alternate set. The standard operator still work when @ALTERNATE is in effect. The alternate 
operators remain in effect until the @STANDARD directive is used or the end of the module is reached.  

@RADIX  
Syntax  
@radix expr ;  
Expr:  A valid expression that produces the number 2, 8, 10 or 16 to indicate a new default base number.  

The @Radix directive changes the default base. The default is base 10 (decimal). The newly-specified default base 
stays in effect until another @radix directive is issued or until the end of the module is reached. Note that when a new 
@radix is issued, the specification of the new base must be in the current base format  

Example  

@radix 2;           “change default base to binary  
…  
@radix 1010;     “change back from binary  to decimal 

 
@STANDARD  
Syntax  
@standard  

BASE NAME BASE Symbol.
Binary 2 ^b 
Octal 8 ^o 
Decimal 10 ^d (default) 
Hexadecimal 16 ^h 

Specified in 
ABEL Decimal Value

35 35 
^h35 53 
^b101 5 



The @standard option resets the operators to the ABEL-HDL standard. The alternate set is chosen with the 
@alternative directive.  
   
   

6. Sets 
A set is a collection of signals or constants used to reference a group of signals by one name. A set is very handy to 
simplify logic expressions. Any operation that is applied to a set is applied to each element. 

A set is a list of constants or signals separated by commas or the range operator (..) put between square brackets 
(required).  

Examples: 

However, the following is not allowed: [D0, X];  

in which X is also a set X = [X3..X0]; Instead one can write: 

[D0, X3..X0]; 

a. Indexing or accessing a set 

Indexing allows you to access elements within a set. Use numerical values to indicate the set index. The number 
refers to the bit position in the set starting with 0 for the least significant bit of the set. Here are some examples. 

D1 = [D15..D0]; "set declaration 

X2 = [X3..X0]; "set declaration  

X2 := D1[3..0]; "makes X2 equal to [D3, D2, D1, D0]  

X2 := D1[7..4]; "makes X2 equal to [D7, D6, D5, D4] 

To access one element in the set, use the following syntax: 

OUT = (X[2] == 1); 

Here a comparator operator (==) is used to convert the single-element (X[2]) into a bit value equivalent to X2. The 
comparator (==) gives a"1" or "0" depending if the comparison is True or False. Notice the difference between the 
assignment operator (=) and the equal operator (==). The assignment operator is used in equations rather than in 
expressions. Equations assign the value of an expression to the output signals. 

b. Set operations 

[D0,D1,D2,D4,D5] 
[D0..D6] " incrementing range 
[b6..b0] " decrementing range 
[D7..D15] 
[b1,b2,a0..a3] " range within a larger set

[!S7..!S0] "decrementing range of active -low 
signals



Most of the operations can be applied to a set and are performed on each element of the set according to the rules of 
Boolean algebra. Operations are performed according to the operator's priority; operators with the same priority are 
performed from left to right (unless one uses parentheses). Here are a couple of examples.  
   
  

Example 1:  

Signal = [D2,D1,D0]; "declaration of Signal set 

Signal = [1,0,1] & [0,1,1];" results in Signal being "equal to [0,0,1] 

Example 2: 

[A,B] = C & D; 

this is equivalent to two statements: 

A = C & D; 

B = C & D; 

Example 3: 

[A1,B1] = [D1,D2] & [C3,C2]; 

is equivalent to: [A1,B1] = [D1 & C3, D2 & C2];  

thus A1 = D1 & C3, and B1= D2 & C2. 

Example 4: 

X & [A,B,C]; 

which is equivalent to 

[X&A, X&B, X&C]; 

However consider the following expression 

2 & [A,B,C]; 

now the number "2" is first converted into a binary representation and padded with zeros (0010) if necessary. Thus the 
above equation is equivalent to: 

[0 & A, 1 & B, 0 & C]; 

Example 5: 

A=[A2,A1,A0]; "set declaration 

B=[B2,B1,B0]; "set declaration  



A # B; is equivalent to [A2 # B2, A1 # B1, A0 # B0];  

!A; is equivalent to [!A2,!A1,!A0]; 

Example 6: 

[b3,b2,b1,b0] = 2;"is equivalent to b3=0,b2=0,b1=1,b0=0. 

The number "2" is converted into binary and padded with zeros (0010). 

Example 7: Sets are also handy to specify logic equations. Suppose you need to specify the equation:  

Chip_Sel = !A7 & A6 & A5; 

This can be done using sets. First define a constant Addr set.: 

Addr = [A7,A6,A5];" declares a constant set Addr. 

One can then use the following equation to specify the address: 

Chip_Sel = Addr == [0,1,1]; 

which is equivalent to saying: 

Chip_Sel = !A7 & A6 & A5; 

Indeed, if A7=0, A6=1 and A5=1, the expression Addr ==[0,1,1] is true (or 1) and thus Chip_Sel will be true (or 1). 
Another way to write the same equation is: 

Chip_Sel = Addr == 3; " decimal 3 is equal to 011. 

The above expressions are very helpful when working with a large number of variables (ex. a 16 bit address). 

Example 8:  

For the same constants as in the example above, the expression,  

3 & Addr; 

which is equivalent to 

[0,1,1] & [A7,A6,A5] 

[0 & A7, 1 & A6, 1 & A5]  

[0,A6,A5]. 

However, the following statement is different: 

3 & (Addr == 1); 

which is equivalent to: 



3 & (!A7 & !A6 & A5). 

However, the relational operator (==) gives only one bit, so that the rest of the equation evaluates also to one bit, and 
the "3" is truncated to "1":. Thus the above equation is equal to: 

1& !A7 & !A6 & A5. 

7. Operators 
There are four basic types of operators: logical, arithmetic, relational and assignment.. 

a. Logical Operators 

The table below gives the logical operators. They are performed bit by bit. With the @ALTERNATIVE directive, one 
can use the alternative set of operators as indicated in the table.  
  

b. Arithmetic operators 

The table below gives the arithmetic operators. Note that the last four operators are not allowed with sets. The minus 
sign can have different meanings: used between two operands it indicates subtraction (or adding the twos 
complement), while used with one operator it indicates the twos complement.  
  

c. Relational operators 

These operators produce a Boolean value of True (-1) or False (0). The logical true value of -1 in twos complement is 
represented by all ones (i.e.all bits will be ones: ex. for a 16 bit word all bits are one: -1 is represented by 1111 1111 
1111 1111).  
  

Operator (default) Description Alternate operator

! NOT (ones 
complement) /

& AND * 
# OR +
$ XOR: exclusive or :+: 
!$ XNOR: exclusive nor :*:

Operator Example Description
- -D1 Twos complement (negation) 
- C1-C2 Subtraction 
+ A+B Addition 

The following operators are not used with sets:  
* A*B Multiplication 
/ A/B Unsigned integer division 
% A%B Modulus: remainder of A/B 
<< A<<B Shift A left by B bits 
>> A>>B Shift B right by B bits 

Operator Example Description 



 
  

Relational operators are unsigned. Be careful: !0 is the one complement of 0 or 11111111 (8 bits data) which is 255 
in unsigned binary. Thus !0 > 9 is true. The expression -1>5 is true for the same reason.  

A relational expression can be used whenever a number can be used. The -1 or 0 will be substituted depending on the 
logical result. As an example :  

A = B !$ (C == D); 

A will be equal to B if C is equal to D (true or 11111...; B XNOR 1 equals B), otherwise, A will be equal to the 
complement of B (if C is not equal to B (false or 0)). 

d. Assignment operators 

These operators are used in equations to assign the value of an expression to output signals. There are two types of 
assignment operators: combinational and registered. In a combinational operator the assignment occurs immediately 
without any delay. The registered assignment occurs at the next clock pulse associated with the output. As an 
example, one can define a flip-flop with the following statements: 

Q1 pin istype 'reg'; 

Q1 := D; 

The first statement defines the Q1 flip-flop by using the 'reg' as istype (registered output). The second statement tells 
that the output of the flip-flop will take the value of the D input at the next clock transition.  
  

e. Operator priority 

The priority of each operator is given in the following table, with priority 1 the highest and 4 the lowest. Operators 
with the same priority are performed from left to right.  
  

== A==B or 3==5 (false) Equal
!= A!=B or 3 != 5 (true) Not equal
< A<B or 3 < 5 (true) Less than
<= A<=B or 3 <= 5 (true) Less than or equal
> A>B or -1 > 5 (true) Greater than

>= A>=B or !0 >= 5 
(true) Greater than or equal

Operator Description
= Combinational assignment 
:= Registered assignment

Priority Operator Description 

1 - Negation (twos 
complement) 

1 ! NOT 
2 & AND 



8. Logic description 
A logic design can be described in the following way. 

Equations  
Truth Table  
State Description  

a. Equations 

Use the keyword equations to begin the logic descriptions. Equations specify logic expressions using the 
operators described above, or "When-Then-Else" statement. 

The "When-Then-Else" statement is used in equations to describe a logic function. (Note: "If -Then-Else" is used in 
the State-diagram section to describe state progression).  

The format of the "When-Then-Else" statement is as follows:  

WHEN condition THEN element=expression; 

ELSE equation;  

or  

WHEN condition THEN equation; 

Examples of equations: 

SUM = (A & !B) # (!A & B) ;  
A0 := EN & !D1 & D3 & !D7; 

2 << shift left 
2 >> shift right 
2 * multiply 
2 / unsigned division 
2 % modulus 
3 + add 
3 - subtract 
3 # OR
3 $ XOR 
3 !$ XNOR 
4 == equal 
4 != not equal 
4 < less then 
4 <= less then or equal 
4 > greater than 
4 >= greater than or equal 



WHEN (A == B) THEN D1_out = A1;  
   
ELSE WHEN (A == C) THEN D1_out = A0; 

WHEN (A>B) THEN { X1 :=D1; X2 :=D2; } 

One can use the braces { } to group sections together in blocks. The text in a block can be on one line or span many 
lines. Blocks are used in equations, state diagrams and directives. 

b. Truth Tables 

The keyword is truth-table and the syntax is 

TRUTH_TABLE ( in_ids -> out_ids ) 

inputs -> outputs ; 

or 

TRUTH_TABLE ( in_ids :> reg_ids ) 

inputs :> reg_outs ; 

or 

TRUTH_TABLE 

( in_ids :> reg_ids -> out_ids )  

inputs :> reg_outs -> outputs ;  
  

in which "->" is for combinational output and ":>" for registered output. The first line of a truth table (between 
parentheses) defines the inputs and the output signals. The following lines gives the values of the inputs and outputs. 
Each line must end with a semicolon. The inputs and outputs can be single signals or sets. When sets are used as 
inputs or outputs, use the normal set notation, i.e. signals surrounded by square brackets and separated by commans. 
A don't care is represented by a ".X.". 

Example 1: half adder  

TRUTH_TABLE ( [ A, B] -> [Sum, Carry_out] ) 
[ 0, 0 ] -> [0, 0 ] ;  
[ 0, 1 ] -> [1, 0 ] ;  
[ 1, 0 ] -> [1, 0 ] ;  
[ 1, 1 ] -> [1, 1 ] ; 

However, if one defines a set IN = [A,B]; and OUT = [Sum, Carry_out]; the truth table becomes simpler: 

TRUTH_TABLE (IN -> OUT ) 
0 -> 0;  
1 -> 2;  
2 -> 2;  
3 -> 3; 

Example 2: An excluse OR with two intputs and one enable (EN). This example illustrates the use of don't cares (.X.) 



TRUTH_TABLE ([EN, A, B] -> OUT ) 
[ 0, .X.,.X.] -> .X. ;  
[ 1, 0 , 0 ] -> 0 ;  
[ 1, 0 , 1 ] -> 1 ;  
[ 1, 1 , 0 ] -> 1 ;  
[ 1, 1 , 1 ] -> 0 ; 

Example 3: (see Example in R. Katz, section 7.2.1 and table 7.14) 

Truth tables can also be used to define sequential machines. Lets implement a three-bit up counter which counts from 
000, 001, to 111 and back to 000. Lets call QA, QB and QC the outputs of the flip-flops. In addition, we will generate 
an output OUT whenever the counter reaches the state 111. We will also reset the counter to the state 000 when the 
reset signal is high.  

MODULE CNT3; 

CLOCK pin; " input signal  
RESET . pin; " input signal  
OUT pin istype 'com'; " output signal (combinational)  
QC,QB,QA pin istype 'reg'; " output signal (registered)  

[QC,QB,QA].CLK = CLOCK; "FF clocked on the CLOCK input  
[QC,QB,QA].AR = RESET; "asynchronous reset by RESET  

TRUTH_TABLE ) [QC, QB, QA] :> [QC,QB,QA] -> OUT)  
[ 0 0 0 ] :> [ 0 0 1 ] -> 0;  
[ 0 0 1 ] :> [ 0 1 0 ] -> 0;  
[ 0 1 0 ] :> [ 0 1 1 ] -> 0;  
[ 0 1 1 ] :> [ 1 0 0 ] -> 0;  
[ 1 0 0 ] :> [ 1 0 1 ] -> 0;  
[ 1 0 1 ] :> [ 1 1 0 ] -> 0;  
[ 1 1 0 ] :> [ 1 1 1 ] -> 0;  
[ 1 1 1 ] :> [ 0 0 0 ] -> 1; 

END CNT3; 

For the use of .DOT extensions (.CLK and .AR) see section 7d. 

c. State Description 

The State_diagram section contains the state description for the logic design. This section uses the State_diagram 
syntax and the "If-Then-Else", "Goto", "Case" and "With" statements. Usually one declares symbolic state names in 
the Declaration section, which makes reading the program often easier. 

State declaration (in the declaration section) syntax:  

state_id [, state_id ...] STATE ; 

As an example: SREG = [Q1, Q2]; associates the state name SREG with the state defined by Q1 and Q2. 

The syntax for State_diagram is as follows:  

State_diagram state_reg 

STATE state_value : [equation;]  



[equation;]  

:  

:  

trans_stmt ; ... 

The keyword state_diagram indicates the beginning of a state machine description. 

The STATE keyword and following statements describe one state of the state diagram and includes a state value or 
symbolic state name, state transition statement and an optional output equation. In the above syntax,  

state_reg: is an identifier that defines the signals that determine the state of the machine. This can be a 
symbolic state register that has been declared earlier in the declaration section.  
state_value: can be an expression, a value or a symbolic state name of the current state;  
equation : an equation that defines the state machine outputs  
trans_stmt: the "If-Then-Else", CASE or GOTO statements to defines the next state, followed with optional
WITH transition equations.  

If-Then-Else statement: 

This statement is used in the state_diagram section to describe the next state and to specify mutually exclusive 
transition conditions.  

Syntax:  

IF expression THEN state_exp 

[ELSE state_exp] ; 

In which state-exp can be a logic expression or a symbolic state name. Note that the "IF-Then-Else" statement can 
only be used in the state_diagram section (use the "When-If-Then" to describe logic functions". The ELSE clause is 
optional. The IF-Then-Else statements can be nexted with Goto, Case and With statements. 

Example (after R. Katz):  

in the declaration section we define first the state registers:  

SREG = [Q1, Q0]; "definition of state registers  
S0 = [0, 0];  
S1 = [1, 1]; 

state_diagram SREG  
state S0: OUT1 = 1;  

   
if A then S1  
else S0; 

state S1: OUT2 =1; 
   
if A then S0  
else S1; 



"If-Then-Else" statements can be nested as in the following example (after Wakerly). We assume that one has defined 
the registers and states in the declaration section. 

state_diagram MAK 

state INIT: if RESET then INIT else LOOK;  

state LOOK: if REST than INIT  
else if (X == LASTX) then OK  
else LOOK; 

state OK: if RESET than INIT 
else if Y then OK  
else if (X == LASTX) then OK  
else LOOK; 

state OK: goto INIT;  
  

"with" statement: 

Syntax:  

trans_stmt state_exp WITH equation  
[equation ] ... ; 

in which trans_stmt can be "If-then-else", 'Goto" or a "Case" statement.  
state_exp: is the next state, and equation is an equation for the machine outputs. 

This statement can be used with the "If-Then-Else", "Goto" or "Case" statements in place of a simple state expression. 
The "With" statement allows the output equations to be written in terms of transitions.  

Example 1:  

if X#Y==1 then S1 with Z=1 else S2; 

In the above example, the output Z will be asserted as soon as the expression after the if statement evaluates to a logic 
1 (or TRUE). The expression after the "With" keyword can be an equation that will be evaluated as soon as the if 
condition is true as in example 2: 

Example 2:  

if X&!Y then S3 with Z=X#Y else S2 with Z=Y; 

The "With" statement is also useful to describe output behavior of registered outputs, since registered outputs would 
lag by one clock cycle. It allows one also for instance to specify that a registered output should have a specific value 
after a particular transition. As an example [1], 

Example 3[1]:  

state S1:  

if RST then S2 with { OUT1 := 1; 
Error-Adrs := ADDRESS; } 

else if (ADDRESS <= ^hC101) 



then S4  
else S1; 

Notice that one can use curly braces to control a group of outputs and equations after the With keyword as in the 
example above. 

Example 3:  

state S1: if (A & B) then S2 with TK = 1 
else S0 with TK = 0 ; 

You have to be aware of the timing when using the "With " statement with combinational or asynchronous outputs (as 
in a Mealy machine). A Mealy machine changes its outputs as soon as the input changes. This may cause the output to 
change too quickly resulting in glitches. The outputs of a Mealy machine will be valid at the end of a state time (i.e. 
just before the clock transition). In this respect a Moore output (with synhronous outputs) is less prone to timing 
errors. An example of a Mealy machine and a Moore machine is available. 

Case statement  

Syntax:  

CASE expression : state_exp; 

[ expression : state_exp; ]  
:  

ENDCASE ; 

expression is any valid ABEL expression and state_exp is an expression that indicates the next state (optionally 
followed by WITH statement). 

Example:  

State S0: 
case ( A == 0) : S1; 

( A == 1) : S0; 
endcase; 

The case statement is used to list a sequence of mutually-exclusive transition conditions and corresponding next 
states. The CASE statement conditions must be mutually exclusive (no two transition conditions can be true at the 
same time) or the resulting next state is unpredictable. 

d. Dot extensions 

One can use dot extensions to more precisely describe the behavior of the circuit. The signal extensions are very 
handy and provide a means to refer specifically to internal signals and nodes associated with a primary signal. 

The syntax is  

signal_name.ext 

Some of the dot extensions are given in the following table. Extensions are not case sensitive. Some dot extensions 
are general purpose (also called architecture independent or pin-to-pin) and can used with a variety of device 
architectures. Other dot extensions are used for specific classes of device architectures and are called architecture-



dependent or detailed dot extensions. In general, you can use either dot extensions.  
  

The figure below illustrates some of the extensions.  

 
 
 

Dot extension Description
Architecture independent or pin-to-pin extensions
.ACLR Asynchronous register reset 
.ASET Asynchronous register preset 
.CLK Clock input to an edge-triggered flip-flop 
.CLR Synchronous register reset 

.COM Cominbational feedback from flip-flop 
data input 

.FG Register feedback

.OE Output enable

.PIN Pin feedback

.SET Synchronous register preset 
Device Specific extensions (architecture dependent)
.D Data input to a D Flip flop 
.J J input to a JK flip-flop 
.K K input to a JK flip-flop 
.S S input to a SR flip-flop 
.R R input to a SR flip-flop 
.T T input to a T flip-flop 
.Q Register feedback
.PR Register preset
.RE Register reset
.AP Asynchronous register preset 
.AR Asynchronous register reset 
.SP Synchronous register preset 
.SR Synchronous register reset 



Figure 1: Illustration of DOT extensions for: (a) an architecture independent (pin-to-pin) and (b) arhitecture 
dependent D-type (or T-type) Flip Flop Architecture 

Example 1:  

[S6..S0].OE = ACTIVE; 

which accesses the tri state control signal of the output buffers of the signals S6..S0. When ACTIVE is high, the 
signals will be enabled, otherwise a high Z output is generated. 

Example 2:  

Q.AR = reset; 

[Z.ar, Q.ar] = reset; 

which resets to output of the registers (flip flops) to zero when reset is high. 

9. Test vectors 
Test vectors are optional and provide a means to verify the correct operation of a state machine. The vectors specify 
the expected logical operation of a logic device by explicitly giving the outputs as a function of the inputs. 

Syntax:  

   
Test_vectors [note] 

(input [, input ].. -> output [, output ] .. )  

[invalues -> outvalues ; ]  
:  
: 

Example: 

Test_vectors 

( [A, B] -> [Sum, Carry] )  

[ 0, 0 ] -> [0, 0];  
[ 0, 1 ] -> [1, 0];  
[ 1, 0 ] -> [1, 0];  
[ 1, 1 ] -> [1, 1]; 

One can also specify the values for the set with numeric constants as shown below. 

Test_vectors 

( [A, B] -> [Sum, Carry] )  
0 -> 0;  
1 -> 2;  
2 -> 2;  



3 -> 3; 

Don't cares (.X.), clock inputs (.C.) as well as symbolic constants are allowed, as shown in the following example.  
   
  

test_vectors 

( [CLK, RESET, A, B ] -> [ Y0, Y1, Y3] )  
[.X., 1, .X.,.X.]->[ S0, 0, 0];  
[.C., 0, 0, 1 ] -> [ S0, 0, 0];  
[.C., 1, 1, 0 ] -> [ S0, 0, 1]; 

10. Property Statements 
ABEL allows to give device specific statements using the property statement. This statement will be passed to the 
"Fitter" program during compilation. For the CPLD devices these properties include 

Slew rates  
Logic optimizations  
Logic placement  
Power settings  
Preload values  

11. Miscellaneous 

a. Active-low declarations 

Active low signals are defined with a "!" operator, as shown below, 

!OUT pin istype 'com' ; 

When this signal is used in a subsequent design description, it will be automatically complemented. As an example 
consider the following description, 

module EXAMPLE 

A, B pin ;  

!OUT pin istype 'com';  

equations  

OUT = A & !B # !A & B ;  

end 

In this example, the signal OUT is an XOR of A and B, i.e. OUT will be "1" (High, or ON) when only one of the 
inputs is "1", otherwise OUT is "0". However, the output pin is defined as !OUT , i.e. as an active-low signal, which 
means that the pin will go low "0" (Active-low or ON) when only one of the two inputs are "1". One could have 
obtained the same result by inverting the signal in the equations and declaring the pin to be OUT, as is shown in the 
following example. This is called explicit pin-to-pin active-low (because one uses active-low signals in the equations). 



module EXAMPLE 

A, B pin ;  

OUT pin istype 'com';  

equations  

!OUT = A & !B # !A & B ;  

end 

Active low can be specified for a set as well. As an example lets define the sets A,B and C. 

A = [A2,A1,A0]; "set declaration  
B = [B2,B1.B0]; "set declaration  
X = [X2,X1.X0]; "set declaration 

!X = A & !B # !A & B; 

The last equation is equivalent to writing 

!X0 = A0 & !B0 # !A0 & B0;  
!X1 = A1 & !B1 # !A1 & B1;  
!X2 = A2 & !B2 # !A2 & B2; 
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