Calculating e to 116,000 Places with an Apple][Computer

In this article, Steve Wozniak describes how he calculated e to 47K of preci-
sion on an Apple II with only 48K of RAM. To achieve this, he had to
remove almost all system software. Even video memory was used to store
e, which was written to tape after calculation to preserve its value so that
the Apple II monitor could print to the screen. (1981:6 p392)

The Impossible Dream:

Computing e to 116,000 Places with a
Personal Computer

Stephen Wozniak
Apple Computer Inc
10260 Bandley Dr
Cupertino CA 95014

The 1960s were a decade of unrest, turbulence, and ac-
complishment. Man walked on the moon, Star Trek was
launched, and the first million digits of = were deter-
mined by a computer. Today, as we face the early 1980s,
Robert Truax, a backyard hobbyist, is constructing a
private spacecraft, Star Trek has been revived as a
movie, and personal computers are a reality. As a people,
passion drives us to explore the unknown reaches of our
universe. It is pleasing to note that this exploration is no
longer the exclusive domain of governments and large in-
stitutions.

The purpose of this article is to share my experiences in
computing the mathematical constant e to 116,000 digits
of precision on an Apple Il computer. Although this com-
putation has little intrinsic value or use, the experience
was stimulating and educational. The problems I was
forced to overcome gave me insights that greatly con-

tributed to new floating-point routines. These routines.

were, in some cases, two to three times as fast as those
currently implemented in some of our languages at Ap-
ple. Because I wanted to develop my own solutions to the
problem, 1 did not research existing techniques for com-
puting e to great precision. Therefore, my approaches are
quite possibly not state-of-the-art.

| first calculated e to 47 K bytes of precision in January
1978. The program ran for 4.5 days, and the binary result
was saved on cassette tape. Because I had no way of

Just before this issue went to press, Steve Wozniak
told me that he had redesigned the theoretical “e-ma-
chine” that uses dedicated hardware for calculating e.
The machine, which costs under $10,000, would use
disk storage on a hard disk to replace large amounts of
programmable memory. Steve estimates that a
calculation of e to 100,000,000 places (ten times as
many places as the current calculation of e) could be
made in three months of calculation time....GW

detecting lost-bit errors on the Apple (16 K-byte dynamic
memory circuits were new items back then), a second
result, matching the first, was required. Only then would
I have enough confidence in the binary result to print it in
decimal.

Before I could rerun the 4.5 day program successfully,
other projects at Apple, principally the floppy-disk con-
troller, forced me to deposit the project in the bottom
drawer. This article, already begun, was postponed along
with it. Two years later, in March 1980, I pulled the e
project out of the drawer and reran it, obtaining the same
results. As usual (for some of us), writing the magazine
article consumed more time than that spent meeting the
technical challenges.

Little Things Add Up

To compute the value of e, a method or formula must
be found or derived. The CRC Standard Mathematical
Tables handbook (see references) provides the well-
known formula:

e=1+ 1/11 + 1721 + 1/31 + ...

We know that e is approximately 2.71828. For the sake of
simplicity, we will deal with the fractional part only
(.71828, etc) and abbreviate it efrac.

efrac = 1/21 + 1/31 + 1/41 + ...

Because each term is less than one-half the prior term,
this series converges with the property that the sum of all
terms beyond a specified nth term is less than that nth
term. Thus, if the series is truncated after n terms, the
maximum error in the computation is less than (1/n!).
This property relates the number of terms used, n, to the
precision obtained in the computation. Because this series
contains a factorial in the denominator of the terms, it is
said to converge rapidly. This means that great precision
can be obtained with relatively few terms. For example,

RESTOERAL 473

| Steve Wozniak « BYTE magazine * June 1981

Page 0001 of 0013)

Calculating e to 116,000 Places with an Apple][Computer

the CRC Standard Mathematical Tables handbook lists
100! as 9.3326 X 10'*’, signifying that 100 termis will yield
almost 158 digits of precision. The rate of convergence is
sufficient that, for the problem at hand, neither algebraic
manipulation of the series for faster convergence nor
selection of a different formula is necessary.

Divide and Conquer

The following algorithm accomplishes the evaluation
of the series for e. Of course, all critical routines should
be implemented in highly optimized machine (assembly)
language for speed. An extra hour spent optimizing the
innermost loops could save days of computation time.
Even self-modifying code should be used to save a critical
microsecond! Binary arithmetic should be used to obtain
maximal precision and the fastest possible computation
time. Later, the result can be converted to decimal as it is
printed.

The algorithm is as follows (also see figure 1):

1. Divide available memory equally into two arrays,
TERM and E. The TERM array will contain successive
terms (1/il) and is initialized to 0.5 (*/2!). The E array will
contain the running total of the terms and is also initial-
ized to 0.5. Both arrays can be thought of as long bit
streams of the fractional parts of the numbers they repre-
sent.

2. Set the variable DIVISOR to an initial value of 3.

3. Divide TERM by DIVISOR, forming 1/(DIVISORI).
Multiprecision division techniques will be discussed later.
4. Add TERM to E, keeping the assumed decimal points
aligned. This sum will always be purely fractional (ie: it
will never equal or exceed 1).

5. Increment the DIVISOR variable.

6. Repeat steps 3, 4, and 5 until TERM is reduced to all
zeros or until a predetermined maximum divisor is
reached.

This basic computation algorithm utilizes only 50% of
available memory for the result. By rearranging the series
for e, we can arrive at an approach that utilizes 100% of
the memory.

TERM . 0. To T T2 33 Tn-1 TN
E . 0. Eqy €y Ep } ? EN-1 En
ASSUME
BINARY
POINT HERE

Figure 1: Memory usage in the first algorithm to calculate e.
Equal amounts of memory are devoted to a sequence of bytes
representing the value of the current term being calculated
(TERM) and the sum of all terms calculated thus far (E). Both
numbers are seen as binary fractions (ie: the leftmost bit repre-
sents V1, the next bit represents Vi, etc).

476 BEST OF BYTE

We begin by reversing the order of terms in efrac:

1/21 + 1731 + ... + 1/(n—=1)I + 1/nl (n terms)
1/nl + 1/(n=1)1 + ... + 1/3! + 1/2I

I

efrac

We then develop the following identity:

1,1 1 o, 1
it (i—1)1 iGi—-1)1 (i—1)I

141
i

(i—1)!

By repeatedly applying this identity to the formula, we
get:

On inspection, the second series is equivalent to the
first for n terms. A notable property of the new seriesis
that the computation begins with the nth (greates)
divisor and ends with 2 (the smallest). The algorithm for
computing e with this series is as follows:

1. Allocate all available memory to the E array (which
stores the value of efrac, the fractional part of e). In
itialize it to zero.

2. Set the initial value of DIVISOR to n, the preca:
culated maximum term (where nl is greater than the
precision of the result to be computed).

3. Add 1 to E and divide by the current DIVISOR. The
addition may simply imply setting the carry befor
dividing.

4. Decrement the DIVISOR.

5. Repeat steps 3 and 4 until the divisor equals 1.

[r——————

Divisor E (after step 3)
5 1/5
4 1/4 + 1/(4 X 5)
3 1/3 + 1/(3x4) + 1/(3x4x5)
2 12 + 1/(2x%3) + 1/(2x3x4) + 1/(2x3x4x5)

(1720 + 1/3! + 1/4! + 1/5!)

Table 1: Example of the calculation of e by the firs
algorithm.

| Steve Wozniak « BYTE magazine * June 1981

Page 0002 of 0013)

Calculating e to 116,000 Places with an Apple][Computer

An example of this algorithm for n=5 is given in table 1.

How Large Is It?

An associate of mine once discovered that integrated
circuit layouts could be conveniently specified in nano-
acres! In the computation of e, it is more meaningful to
specify the precision of the result in decimal digits rather
than in the number of bytes allocated. The following for-
mula performs the conversion:

logolx) = 108150(1) X 10810(256)
(number of digits) = (number of bytes) X (2.40824)

For example, assume that 14 K bytes of memory are al-
located to the fraction of e. The number of digits of ac-
curacy this represents is given by the following:

14 X 1024 X 2.40824
34524.5 digits

number of digits

The process of calculating the number of terms needed
to compute e to this precision is less straightforward.
What must be determined is the minimum value of n,
where n! is greater than the precision corresponding to
available memory. For the above example, this is the
minimum n such that nl is greater than 10****. The CRC
Standard Mathematical Tables handbook lists Stirling’s
Formula, an equation useful for calculating the
magnitude of n! for reasonably large n:

lim nl exp(n) - VIr

ndoo n(noo.u

Taking the natural logarithms of both sides, we get:

lim In(nl) = In(2m) + [In(n)] [n+0.5] — n

ndoe

Dividing by In(10) to obtain the result in common
(base-10) logarithms, we see the following:

,l.l.T logso(n!) =138_‘°3(2_") +[loge10(n)}[n+0.5]~ ——ln(';O)

The integer portion of this result gives us one less than the
number of digits in (nl).

The HP-41C calculator program in listing 1 calculates
logio{n!) (the number of digits in nl), given n.

By trial and error, it is easy to zero in on the minimum
n for which log,o (n!) is greater than 34,524, the number
of digits of precision corresponding to 14 K bytes of
memory. Table 2 shows a set of values for n in the order
in which they were calculated to find the desired value.

The value 9716 is found to be the minimum suitable
value of n. Because it is difficult to relate the precision of
nl to that of 1/nl, a slightly higher value (perhaps 9720)
should be used for n. This will also compensate for minor
formula or calculation errors.

A Multiprecision Division Algorithm

The problem at hand calls for the division of a very
large dividend (possibly several kilobytes) by a moderate
divisor (2 bytes). The general approach is to shift the
divisor relative to the dividend, from the most significant
bits toward the least, performing the familiar subtract/
replace and shift technique that we call long division.

A few general optimizations should be considered.
First, the following algorithm assumes that the divisor is
less than 32,768 (2'%). If the divisor were to exceed
32,768, it would have to be compared to a value that
could exceed 16 bits (2 bytes). Because indexed opera-
tions on the 6502 microprocessor are slower than ab-
solute, direct, zero-page, or register operations, a few
“fast” memory locations are allocated to hold the tem-
porary (ie: relating to the current byte) dividend/quo-
tient, and remainder. These locations are designated A0
(dividend/quotient), and Al and A2 (2-byte remainder),
and they should be allocated to the most accessible
memory locations (or registers). The high-order byte of
the fraction array E is assumed to be E(0), and the low-
order byte is E(n). Remember that the 2-byte divisor, NH
and NL, represents a whole number, and that the divi-
dend represents a binary fraction with the binary point
directly to the left of the MSB (most significant bit) of
E(0).

In the algorithm that follows, the A0 byte represents
the current byte, E(i), of the dividend at step 2. By step 6,
however, all the digits of the dividend have been shifted
out to the left (to the A1, A2 combination), and the digits
of the new quotient have been shifted into A0 from the
right. A0 is actually doing the work of two 8-bit registers.

Of course, all computation should be done in binary
for maximum precision and speed. While targeted for
8-bit machines, these techniques are applicable to ma-
chines of longer word lengths.

The “add 1 and divide by n” algorithm (see figure 2) is
as follows:

1. Initialize the remainder (locations A2 and A1) to 1, ef-
fectively adding 1.0 to the fractional dividend prior to
dividing. (A2 is the most significant byte of the re-
mainder.) This accommodates the algorithm developed
for calculating e. An unmodified divide operation would
call for initializing the remainder to zero. Initialize the in-
dex, i, to zero.

2. Move the next dividend byte, E(i), to location A0 to
divide it by n. Shift A0 left 1 bit, moving the MSB into
the carry bit.

Listing 1: The FACTLOG program for the Hewlett-Packard
HP-41C calculator. This program calculates the approximate
number of digits in the number (n!).

LBL ALPHA FACTLOG ALPHA ENTER LOG LASTX .5 + *
x<>y IOLN/ -

PI ENTER + LOG 2/ + RIN

BEST OF BYTE 477

| Steve Wozniak « BYTE magazine * June 1981

Page 0003 of 0013)

Calculating e to 116,000 Places with an Apple][Computer

3. Rotate the 16-bit remainder (A2 and A1) to the left by
1 bit, and rotate the carry bit from AO into the LSB (least
significant bit) of A1. This corresponds to the “shift” por-
tion of the subtract-and-shift algorithm for division. No
overflow can occur from this shift because the residual re-
mainder must be less than twice the divisor, which in turn
is less than 32,768 (2"°).

4. Compare the remainder, A2 and Al, to the divisor
locations NH and NL. If the remainder is greater, then re-
place it with the difference of the two and set the quotient
bit to 1. Otherwise, clear the quotient bit.

5. Rotate the quotient bit into the LSB of AQ, and rotate
the MSB of AO into the carry bit.

6. Perform steps 3, 4, and 5, a total of eight times. Then
replace E(i) with the byte in A0 (which is now the quo-
tient of the byte-wide division just finished). Increment
the index, i, and continue at step 2 until the last byte,
E(n), has been processed.

Special Optimizations

I drive a small car and have found that it is helpful to
accelerate or decelerate slightly in advance of certain
stretches of the road (especially hills and downgrades) to
obtain an - adequate performance. Similarly, it is
sometimes necessary to compensate for the inherent defi-
ciencies of microprocessors (eg: their size) by carefully
implementing specific optimizations. For example, the
comparison performed in step 4 (discussed above) would
normally be done by subtracting the low, and then high
bytes, and possibly preserving the difference for replace-
ment of the remainder. Within certain processors, it may
be faster to first compare the high bytes, since they fre-
quently dictate the comparison result (255 out of 256
times for arbitrary contents). Also, the critical steps 3, 4,
and 5 can be coded eight times in-line to avoid the over-
head time of a loop. And because the divisor changes in-

n log,, (n!)
(number of digits
inn')

10000 35659.5
9000 31681.9
9700 34461.4
9800 34860.3
9730 34581.0
9720 34541.2
9710 34501.3
9715 34521.2
9716 34525.2

Table 2: Trial-and-error determination of the number of
terms, n, needed to obtain 34,524 digits of precision in the
calculation of e. In the algorithm used to calculate e, the
smallest contribution to the final value is made by the term
(1/n!). The number of digits in (n!) is determined by
estimating the value of n! and taking the logarithm to the
base 10. The desired value of n is the first integer value
greater than 34,524.

frequently, it can be coded as fast immediate-mode data.
After each full divide, the code, which resides in pro-
grammable memory, can be modified for the next
divisor.

The 6502 assembly-language program in listing 2 cal-
culates e in 14 K bytes of memory. In order to keep the
listing brief for this article, the program is not fully
optimized. The major operation (add 1, divide) is not
coded in-line eight times but is instead implemented as a
loop. Because the Y register is used as a loop counter, it is
not available as an index to the e array, and time-
consuming increment instructions must be performed on
the instructions at EREF1 and EREF2. Also, it is slightly
faster not to move the current dividend byte of e into a
separate fast location (AQ in the algorithm).

The e array begins at hexadecimal location 800 (which
is the most significant byte of the array). This secondary
text-screen page of the Apple II allows you to view

BINARY MEMORY
POINT HERE
Eo f 5 Ej-2 | Ej-1 E) Ej+1 f 2 EN
MOST SIGNIFICANT LEAST SIGNIFICANT
BYTE BYTE
(2) (6)
——— e —— N
[
! |
REMAINDER: l A2 -— Al l | <_

H 3) |

e
COMPARE, 3
GIVING
QUOTIENT

e e e e e e e e e e e e BIT (4)
I!" 1
DIVISOR | I NH] I NL I :
| |
J

Figure 2: Memory usage in the multiple-byte “add 1 and divide by n" division algorithm. The second algorithm (given in the texi
reduces memory usage by 50% by using one long string of bytes in the computation process. The E array is divided 1 byte at a time by
the 2-byte divisor. The A0 byte is used to store both the dividend and the quotient at different points in the algorithm. The numbers
in parentheses refer to numbered steps in the algorithm.

478 BEST OF BYTE

| Steve Wozniak « BYTE magazine * June 1981 Page 0004 of 0013)

Calculating e to 116,000 Places with an Apple][Computer

roughly the first 1 K bytes of e as they are calculated.
Although the character representation is not readily use-
ful, it is at least comforting to observe that the program is
working on the correct section of memory. Do not ex-
ecute this program until you read further and have a
good idea of how long it runs before completion. Also,
remember that although the result is in binary and some-
what meaningless, it will later be converted to decimal
and printed.

Tomorrow Is a Long Time

The execution time of this program is proportional to
the number of divisions performed (9719 for the above
example), the number of bytes being divided (14 K bytes
in this case), and the average divide time per byte.

The average divide time per byte is calculated as
follows. In listing 2, the numbers in parentheses are the
cycle times of all significant instructions of the divide
routine. Careful analysis shows that when the high-order
dividend (remainder) byte is less than the high-order
divisor byte, 23 cycles are used. When the former is
greater than or equal to the latter, 39 cycles are used,
with approximately 13.5 additional cycles (on the aver-

age) if the two are equal. Statisticaily, the remainder will
be less than the divisor half of the time and greater than
or equal to the divisor half of the time. Analysis reveals
that the 2 bytes will be equal approximately one out of
every 2H comparisons, where H is the high-order divisor
byte contents. In the example, H varies from 37 down to
0, so the average frequency of equality is 1 in 37. Using
this “fudge factor,” the average cycle time per 1-bit par-
tial division is computed as follows:

23/2 + 39/2 + 13«5/37
31.3649 cycles

cycles per bit =

Every byte divided includes eight of the above itera-
tions plus an overhead of 21 cycles, giving the following
average:
cycles per byte = (cycles per bit X 8 bits per byte)

+ 21
= 31.3649 X 8 + 21
= 271.919 cycles

The average time per cycle on the Apple Il is a function
of the crystal frequency (14.31818 MHz) and the fre-

Listing 2: A 6502 machine-language program for calculating e to 34,524 decimal digits. The result is in binary and must be converted

to decimal by the programs shown in listings 3 and 4.

SOURCE FILE: ECALC1

0000: 1 LSTON

0000: 2 IIIIIIIIIl!lI!IIIIIlll!ll!llll!l!
0000: 3 ¢ *
0000: y e CALCULATION OF E -- 14K #
0000: 5 8 *
0000: 6 ® woz 20-APR-80 »
0000: 7 *
0000: g * EXAMPLE PROGRAM *
0000: 9 * *
0000: 10 ll!llllll!l‘l!llllllllIlll!!lllll
0000: 11 ¢ *
0000: 12 # LOCATIONS $800-3FFF ARE USED *
0000: 13 * FOR THE (BINARY) FRACTION OF *
0000: 14 # E. LOCATION $800 IS THE MOST *
0000: 15 ® SIGNIFICANT BYTE, $3FFF Is *
0000: 16 * THE LEAST SIGNIFICANT. THIS *
0000: 17 % CORRESPONDS TO APPROXIMATELY *
0000: 18 # 34524 DIGITS. *
0000: 19 # *
0000: 20 lll!!ll!l!l!!!!ll!!lll!ll!lllllll
0000: 21 * .
0000: 22 # THE FIRST DIVISOR IS 9720 .
0000: 23 * AND THE LAST IS 2. 9720 *
0000: 24 # FACTORIAL IS GREATER THAN *
0000: 25 % 10 ~ 34524, *
0000: 26 ® 4
0000: 27 Illlllllll!lllll!!ll!l!!'ll!l!lll
0000: 28 * *
0000: 29 # THE MAJOR OPERATION IS AN .
0000: 30 * INCREMENT (+1) OF E FOLLOWED *
0000: 31 # BY A MULTI-PRECISION DIVIDE *

BEST OF BYTE 479

| Steve Wozniak « BYTE magazine * June 1981

Page 0005 of 0013)

Calculating e to 116,000 Places with an Apple][Computer

0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0001:
0800:
0038:
25F8:
25F8:
0025:

===== NEXT

0240:

0240:A9
0242:85
0244 :A9
0246:85
0248:A9
024A:8D
024D:8D
0250:A9
0252:8D
0255:8D
0258:A0
025A:0E
025D: 26
025F:2A
0260:C9
0262:90
0264:D0
0266 : A6
0268:E0
026A:90
026C:AA
026D:AS
026F:E9Q
0271:85
0273:8A
02T4:E9
0276 :2E
0279:88
02T7A:DO
027C:EE
02TF :EE
0282:D0
0284 :EE
0287 :EE
028A:C6
028C:DO
028E:AD
0291:D0

38
01
01
00
08
5C
78
00
5B
7
08
00
00

25
12
06
00
F8
0A

00
F8
00

25
00

E1
5B
T7
D4
5C
78
01
CA
69
06

32 * BY THE CURRENT DIVISOR. .
33 * EACH SUCCESSIVELY LESS SIG- *®
34 # NIFICANT BYTE OF E, TOGETHER *
35 # WITH THE RESIDUAL REMAINDER *
36 # A1 AND A2, IS DIVIDED BY THE *
37 * CURRENT 2-BYTE DIVISOR. THE *
38 # 8-BIT QUOTIENT IS LEFT INE *
39 # AND THE RESIDUAL REMAINDER *#
40 * 1IN A1 AND A2 (ACC HOLDS A2). *
y1 ® .
u2 !llllllill!llilllll!llll!ll.lll!l
43 A1 EQU 0 (CURRENT BYTE OF E IS A0, ACC IS A2)
44 PCOUNT EQU 1 COUNTS RAM PAGES OF E ARRAY.
45 E EQU $800 E, BINARY FRACTION, TO $3FFF.
46 NUMPAG EQU $38 14K IS 56 RAM PAGES.
47 N EQU 9720 (N FACTORIAL IS > 34524 DIGITS)
48 NL EQU N&$FF LO BYTE OF N.
49 NH EQU N/256 HI BYTE OF N.
OBJECT FILE NAME IS ECALC1.0BJO
51 ORG $240
52 NXTDVSR LDA #NUMPAG INIT RAM PAGE COUNTER
53 STA PCOUNT FOR 56 PAGES.
54 LDA #1
55 STA A1 INIT RESIDUAL REMAINDER TO 1. (FOR +1)
56 LDA #E/256
02 57 STA EREF1+2 MODIFY CODE SO THAT REFS
02 58 STA EREF2+2 TO E POINT TO FIRST BYTE.
59 LDA #0 (ACC IS ALSO A2 OF RESIDUAL REMAINDER)
02 60 STA EREF14+1
02 61 STA EREF2+1
62 NXTBYTE LDY #8 (2) COUNTER--8 BITS PER BYTE.
08 63 EREF1 ASL E (6) MSB OF DIVIDEND BYTE TO CARRY.
64 NXTBIT ROL A1 (5) SHIFT 3-BYTE DIVIDEND.
65 ROL A (2) (ACC IS A2)
66 NHREF1 CMP #NH (2) IF HI BYTE LESS THAN DIVISOR
67 BCC EREF2 (3/2) THEN QUOTIENT BIT IS O.
68 BNE REPLACE (3/2) (TAKEN IF GREATER)
69 LDX A1 (3) COMPARE LOW BYTES IF HI BYTES EQUAL.
70 NLREF1 CPX #NL (2)
71 BCC EREF2 (3/2) IF LESS, QUOTIENT BIT IS O.
72 REPLACE TAX (2)
73 LDA A1 (3) REPLACE RESIDUAL REMAINDER A1 AND A2
74 NLREF2 SBC #NL (2) WITH RESIDUAL REMAINDER
75 STA A1 (3) MINUS CURRENT DIVISOR.
76 TXA (2) (HI BYTE OF RESIDUAL REMAINDER)
77 NHREF2 SBC #NH (2) (GUARANTEED TO SET CARRY)
08 T8 EREF2 ROL E (6) QUOTIENT BIT INTO AO LSB, MSB TO CARRY.
79 DEY (2) NEXT OF 8 BITS.
80 BNE NXTBIT (3/2) LOOP--NOTE: CARRY = QUOTIENT BIT.
02 81 INC EREF1+1 (5)
02 82 INC EREF2+1 (5) MODIFY CODE REFS TO E ARRAY.
83 BNE NXTBYTE (3) (NO BYTE OVERFLOW)
02 84 INC EREF142
02 85 INC EREF2+2 (MODIFY HI BYTE)
86 DEC PCOUNT
87 BNE NXTBYTE LOOP UNTIL DONE 56 RAM PAGES.
02 88 LDA NLREF1+1
89 BNE NXTDVR2

480 BEST OF BYTE

| Steve Wozniak « BYTE magazine * June 1981 Page 0006 of 0013)

Calculating e to 116,000 Places with an Apple][Computer

0293:CE
0296:CE
0299:CE
029C:CE
029F : AD
02A2:4A
02A3:0D
02A6:D0
02A8:60

0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:

61
75
69
70
69

61
98

02
02
02
02
02

02

90
91
92
93
9l
95
96
97
98

DEC NHREF1+1 DECR IMMEDIATE REFS TO

DEC NHREF2+1 CURRENT DIVISOR.
NXTDVR2 DEC NLREF1+1

DEC NLREF2+1

LDA NLREF1+1

LSR A

ORA NHREF1+1 LOOP IF DIVISOR > 1.

BNE NXTDVSR

RTS (DONE)

#8% SUCCESSFUL ASSEMBLY: NO ERRORS

Listing 3: A BASIC driver program to print e from binary to decimal form. The pro-
gram uses the machine-language program EPRNT, shown in listing 4.

SOURCE FILE: EPRNT

1 Y Y RSN R XSRS RIIXXYIIXIREXZIZZIZZLL)
2] []
3. 'E' PRINTOUT ROUTINES .
y e #
5 & 14K VERSION .
6 » #*
(i Wwoz 20-APR-80 .

g *]

9 llllllllllllIlllllllllllillll!ll
10 []]
11 ®* THESE SUBROUTINES PERFORM *®
12 ® THE CRITICAL OPERATIONS .
13 * FOR CONVERTING THE 14K .
14 ® BINARY VERSION OF ‘'E!' .
15 ® TO DECIMAL FOR PRINTING. .
16 ® THEY ARE INTENDED TO BE .
17 ® CALLED FROM A BASIC PROGRAM *®
18 * WHICH DOES THE ACTUAL .
19 ®# PRINTING. *
20
21 Y Iy X X IZRXZZIZIIZZXTI2Z2222 22
22 []]
23 ®* THE BINARY REPRESENTATION ®
24 # OF THE FRACTIONAL PART OF *®
25 # E (OR ANY OTHER NUMBER *
26 ® TO BE CONVERTED TO DECIMAL) #
27 * IS STORED IN LOCATIONS $800 *
28 # (MOST SIGNIFICANT) TO $3FFF *
29 & (LEAST). THE SUBROUTINES *
30 * INIT AND MULT RESIDE IN THE %
31 * $4000 PAGE OF MEMORY AND .
32 # USE TABLES PRODLO AND .
33 * PRODHI IN THE $4100 AND .
34 * $4200 PAGES RESPECTIVELY. *®
35 #* LOMEM MUST BE SET TO $4300 *
36 * (17152 DECIMAL) OR GREATER *
37 * FROM BASIC, .
38 & #*
39 lllll!l!llilll!lll!ll!ll!lllllll
yo * *

BEST OF BYTE 481

| Steve Wozniak « BYTE magazine * June 1981

Page 0007 of 0013)

Calculating e to 116,000 Places with an Apple][Computer

0000: 41 # SUBROUTINE INIT MUST BE bd
0000: 42 # CALLED ONCE TO GENERATE L
0000: 43 # YMULTIPLY BY 100' TABLES bd
0000: 44 & PRODLO AND PRODHI. INIT hd
0000: 45 & MUST BE CALLED BEFORE MULT. ®
0000: 46 ® *
0000: 47 # SUBROUTINE MULT PERFORMS &
0000: 48 & A 'MULTIPLY BY 100' ON THE #
0000: 49 # NUMBER 'E'., IT RETURNS bd
0000: 50 ® THE NEXT TWO DIGITS OF THE #
0000: 51 ®# DECIMAL EQUIVALENT AS A &
0000: 52 ® NUMBER BETWEEN O AND 99 IN &
0000: 53 ®# LOCATION 1 (WHERE BASIC L
0000: 54 ®# CAN PEEK IT FOR PRINTING). *®
0000: 55 .
0000 56 SENERNRNRENERRRRRRRN RN RN
0000: 58 XSAV EQU O

0001: 59 RESULT EQU 1

0002: 60 PCOUNT EQU 2

4100: 61 PRODLO EQU $4100

4200: 62 PRODHI EQU $4200

0800: 63 E EQU $800

0038: 64 NUMPAG EQU 56

003F: 65 LASTPAG EQU $3F

0000: 66 #

0000: 67 SRR RN RN RN RN RERERRRS
0000: 68 &

----- NEXT OBJECT FILE NAME IS EPRNT.OBJO

4000: 69 ORG $4000

4000:86 00 T0 INIT STX XSAV

4002:A9 00 T1 LDA #0

4004 :AA T2 TAX

4005:A8 T3 TAY

4006:99 00 41 T4 PRODGEN STA PRODLO,Y

4009:48 75 PHA PRESERVE A-REG
400A:8A 76 TXA

400B:99 00 42 T7 STA PRODHI,Y

400E:68 78 PLA

400F:18 79 CLC

4010:69 64 80 ADC #100

4012:90 01 81 BCC NXTPROD

4014 :E8 82 INX

4015:C8 83 NXTPROD INY

4016 :D0 EE 84 BNE PRODGEN

4018:A6 00 85 LDX XSAV

401A:60 86 RTS (RETURN
401B: 87 *

401B: B8 SERNER RN AR RN RN RN R RN NN
401B: 89 #

401B:A9 38 90 MULT LDA #NUMPAG

401D:85 02 91 STA PCOUNT

401F:A9 3F 92 LDA #LASTPAG

4021:8D 32 40 93 STA MULT1+2

4024:8D 38 40 94 STA MULT2+2

482 BEST OF BYTE

X-REG SAVE LOCATION.
RESULT BYTE FROM MULTIPLY.

COUNTS NUMBER OF RAM PAGES OF E.
LOW BYTE TABLE (100 ® IDX).

HI BYTE TABLE (100 * IDX).

E, BINARY FRACTION, TO $3FFF.

56 PAGES IN 14K

LAST (LEAST SIGNIFICANT) PAGE OF E.

PRESERVE X-REG FOR INT BASIC.
STARTING PRODUCT LO BYTE.
STARTING PRODUCT HI BYTE.
STARTING INDEX TO PRODUCT TABLES.
STORE LOW BYTE OF 100 * Y,

HI BYTE OF CURRENT PRODUCT.
STORE HI BYTE OF 100 ®* Y.
RESTORE A-REG (PRODUCT LOW BYTE).

ADD 100 FOR NEXT PRODUCT.

NEXT OF 256 PRODUCTS.

RESTORE X-REG FOR INT BASIC.

56 PAGES IN 14K.

INIT E REFS FOR LEAST
SIGNIGICANT RAM PAGE.

| Steve Wozniak « BYTE magazine * June 1981

Page 0008 of 0013)

Calculating e to 116,000 Places with an Apple][Computer

1027:A0 00 95 LDY #0 INIT INDEX TO E (WILL DECR TO $FF FIRST TIME)
1029:A2 00 96 LDX #0 TRICK TO CLEAR RESIDUAL CAFRRY.
102B:18 97 CLC

¥02C:BD 00 42 98 MULBYT LDA PRODHI,X (4) HI PROD BYTE IS RESIDUAL CARRY.
4102F : 88 99 DEY (2) NEXT MORE SIGNIFICANT BYTE OF E.
%30:BE 00 08 100 MULT1 LDX E,Y (4) (GET IT)

1033:7D 00 41 101 ADC PRODLO,X (4) TIMES 100, PLUS RESIDUAL CARRY.
5036:99 00 08 102 MULT2 STA E,Y (5) RESTORE PRODUCT BYTE.

1039:98 103 TYA (2) LAST BYTE THIS PAGE?

403A:D0 FO 104 BNE MULBYT (3/2) NO, CONTINUE.

103C:CE 32 40 105 DEC MULT1+2 (6)

403F:CE 38 40 106 DEC MULT2+2 (6) NEXT MORE SIGNIFICANT PAGE.
hou2:c6 02 107 DEC PCOUNT (5) DONE 56 PAGES?

4044 :D0 E6 108 BNE MULBYT (3) NO, CONTINUE.

Lo46:7D 00 42 109 ADC PRODHI,X RETRIEVE FINAL CARRY.

4049:85 01 110 STA RESULT SAVE AS TWO-DIGIT RETURNED VALUE.
Lo4B:A6 00 11 LDX XSAV RESTORE X-REG FOR INT BASIC.

504D:60 112 RTS (RETURN)

1% SUCCESSFUL ASSEMBLY: NO ERRORS

liting 4: EPRNT, a machine-language program that converts a binary number for printing as a decimal number.

FORMATTER PROGRAM - APPLE INTEGER BASIC
FILE E1 IS 'E' FROM $800 TO $3FFF

FILE EPRNT.0BJO IS INIT AND MULT SUBRS
CAUTION: MUST SET LOMEM TO 171521

10 D$="": PRINT D$;"NOMON C,I,O": PRINT D$;"BLOAD E1,A$800": PRINT D$;
"BLOAD EPRNT.OBJO,A$4000": PRINT D$;"PR#2"

20 INIT=16384:MULT=16411: CALL INIT:ODDEVEN=0

30 FOR PAGE=1 TO 10: PRINT : PRINT " E";: FOR I=1 TO 63: PRINT " "
;: NEXT I: PRINT "PAGE ";PAGE/10;PAGE MOD 10: PRINT

40 FOR LINE=1 TO 60: IF PAGE>1 OR LINE>1 THEN 50: PRINT " E=2.";: GOTO
60

50 PRINT " ",

60 FOR GROUP=1 TO 12

70 FOR DIG=1 TO 5: GOSUB 200: NEXT DIG

80 PRINT ™ ";: NEXT GROUP

90 PRINT : IF PAGE=10 AND LINE=35 THEN 110: NEXT LINE: REM QUIT AFTER 34500
DIGITS

100 PRINT : PRINT : PRINT : NEXT PAGE

110 PRINT D$;"PR#O": END : REM TURN PRINTER OFF

190 REM

192 REM SUBROTINE 200 PRINTS NEXT DIG

194 REM

200 IF ODDEVEN=1 THEN 220: CALL MULT

210 PRINT PEEK (1)/10;: GOTO 230

220 PRINT PEEK (1) MOD 10;

230 ODDEVEN=1-ODDEVEN: RETURN

BEST OF BYTE 483

| Steve Wozniak « BYTE magazine * June 1981 Page 0009 of 0013)

Calculating e to 116,000 Places with an Apple][Computer

quency-dividing circuitry that generates the micropro-
cessor clock. Due to color-graphics considerations, a
slight adjustment (to eliminate display jitter) is made,
which introduces a constant multiplying the crystal
period, and gives us the following time per machine cy-
cle:

912/((65)(14.31818 MHz))
0.9799269 ps

time per cycle

The division time per byte (in us) and time per pro-
gram execution can now be calculated:

time per byte = cycles per byte X time per cycle
271.919 cycles X .9799269 us
per cycle

= 266.46 pus
time per program = time per byte X number of
bytes X number of divisions
266.46 ps X (14)(1024) X 9719
37,126 seconds
10.3 hours

I

it

il

Note that as you compute e to greater precision, both
the number of divisors and the length of each division in-
crease. Also, at some point, a 2-byte division no longer
suffices and a 3-byte division must be used. This causes
the execution time to vary with roughly the second power
of the precision sought. For example, three times the
precision takes ten times as long to calculatel

Running the Example Program

If you wish to try the example program before branch-
ing out on your own, a few suggestions should be heeded.
First, it is a shame to run a program for 10 hours and then
find out it contained a minor bug. By changing N (the
maximum divisor) to 1000 and NUMPAG to 4 (for 1 K
bytes of precision), a quick trial/practice version can be
assembled. The practice run allows the user to get the ob-
vious mistakes out of the way with minimum conse-
quence and verify that the assembly is correct. The
following commands will clear the memory locations
used, run the program, and finish in about 4.5 minutes
(273 seconds). Hexadecimal location 0800 should contain
B7, and location OBFF should contain 24 upon comple-
tion. As mentioned previously, you can watch the
calculation proceed by displaying the secondary text
screen on the Apple Il. During the trial run, it should be
constantly changing.

The following two lines (to be entered when the Apple
11 is in monitor mode) allow you to run the test program:

*800:0 N801< 800.BFEM
*C055 240G C054

The first line clears the area of memory that will be used,
and the second line switches the video display to text

484 BEST OF BYTE

page 2 (which will contain the value of e being
computed), runs the program of listing 2, then returns to
text page 1 when the program is complete.

The real (10-hour) example program should be run
twice, and the results compared to verify that the pro-
gram does not contain a minor bug and that the constants
were properly determined. As discussed below, it is not
necessary to initialize memory before running the pro-
gram if the constant n has been properly selected. There-
fore, it is recommended that the program be run first with
initialized memory and later with random (uninitialized)
memory. These results, when compared, should be iden-
tical. Once you have confidence in the binary result, save
it on tape or floppy disk for printing in decimal.

Go Forth and Multiply

The computed binary fraction must next be converted
to decimal and printed. The general method of convert-
ing a binary fraction to a decimal fraction is to repeatedly
multiply it by decimal 10 (in binary). The carry from
each multiplication (integer portion of product) is the
next decimal digit. Because the most significant digits are
generated first, the result can be printed as it is generated.

A higher-level language such as BASIC should be used
to format the output, but unless you are planning a short
vacation, highly optimized machine language should be
used for the base conversion. The 6502 programs in
listing 3 accomplish the conversion. Subroutine INIT is
called once to generate a 256-entry, multiply-by-100
lookup table. Subroutine MULT scans the e array, from
the least toward the most significant bytes, multiplying
each byte by 100 via a fast table lookup. It also handles
carries. The resultant carry is a 2-digit number between 0
and 99 that is returned to BASIC for printing. Note that
multiplying by 100, instead of 10, generates 2 digits per
pass.

Seeing Is Believing

The BASIC formatting program in listing 4 should pro-
duce an attractive printout. No single program will suf-
fice, due to the fact that printers and people are so varied.
The considerations include page headers (title, date, page
number), lines per page, spacing between lines, digits per
line, digit groupings (eg: groups separated by a space or
two), and margins. For example, the poor horizontal
registration of a Centronics 779 printer is painfully ob-
vious with single-spaced printouts but almost undetec-
table with double-spaced ones. A little trial and error
will insure that your printout is a perfect “10.”

The program in listing 4 was used with an NEC (Nip-
pon Electric Company) Spinwriter. It prints 60 digits per
line (twelve groups of 5 digits, separated by single blanks)
and 60 lines per page. The page heading is simply the let-
ter e and the page number, carefully aligned with the left
and right margins. The text “e=2." precedes the first digit
of the printout. The program ends after printing 34,500
digits, despite the fact that an additional 24 digits are re-

| Steve Wozniak « BYTE magazine * June 1981

Page 0010 of 0013)

Calculating e to 116,000 Places with an Apple][Computer

quired in order to be correct. The final page and line
number were precalculated to detect this stopping point.
Lines 200 thru 230 make up a digit-printing subroutine
that calls the assembly-language multiply-by-100 routine
(MULT) every other digit.

Analysis of the Algorithm

The specified algorithm has the property that the con-
tents of e at a given stage of computation will yet be
divided by (il), where i is the current divisor. The first im-
plication of this property is that the allocated memory
need not be initialized, since it will all be reduced to in-
significance when divided by n! (because n, the starting
divisor, was specifically chosen such that nl is greater
than the significance corresponding to that much mem-
ory).

An interesting aspect of this implication is that the
result is perfect to the last calculated bit, despite the fact
that terms beyond the nth have been omitted. Additional
terms (before the nth) would simply cause the allocated
memory to have different contents (ie: be initialized ar-
bitrarily) when the nth term is reached. Since division
proceeds from high toward low significant bits, ar-
bitrary data beyond a specified least significant byte can
never affect the contents of that byte or any more signifi-
cant byte. There can be no accumulated truncation errors
such as those encountered with summation-of-terms ap-
proaches.

The second implication is that, at a given stage of cal-
culation, only the most significant bytes of e (ie: those
that will not subsequently be divided to insignificance)
need to be divided! The first divisions can be very short,
only a few bytes or so, while the last ones must encom-
pass all of e. For a given divisor, i, the number of (least
significant) bytes of e which need not be divided is
logse{i!), which may be calculated by the HP-41C pro-
gram in listing 5. Note that it calls the previously written
program FACTLOG, which calculates the number of
digits of (i1). The algorithm used is:

number of bytes of il = number of digits of il/log:0(256)

It is unfeasible to precalculate the number of bytes to
leave undivided (or the number to divide) for each divi-
sor and to save it in a table because the table would con-
sume a great deal of memory. As an alternative, the
divisors can be broken into blocks of, say, 1 K bytes
each, and for each block a fixed number of bytes (of e)

Listing 5: The FACTBYT program for the Hewlett-Packard HP-
41C calculator. This program calculates the precision to which
the multibyte division has to be carried out for a given divisor.
See table 3 for details.

LBL ALPHA FACTBYT ALPHA XEQ ALPHA FACTLOG ALPHA
256 LOG / RTN

Number of Pages

Range of Divisors Number of That Can Be Left
in Same Group Insignificant Bytes Uncalculated
2 to 2047 0 0
2048 to 4905 2448 9.6
4096 to 6143 5406 211
6144 10 8191 8558 33.4
8192 to 10239 11836 46.2
10240 to 12287 15206 59.4
12288 to 14335 18652 729
14336 to 16383 22158 86.6
16384 to 18431 25718 100.5
18432 to 20479 29325 1145
20480 to 22527 32972 128.8
22528 lo 24575 36656 143.2
24576 to 26623 40374 157.7
26624 to 28671 44123 172.4
28672 to 30719 47900 187.1

Table 3: Table of truncated multibyte divisions that can be
made during the second algorithm. Due to the nature of the
second algorithm, most divisors need not carry the division
out the entire length of the multibyte dividend. By grouping
divisors and not calculating the bytes that are unimportant to
that particular group, calculation time can be significantly
decreased.

grouped into fifteen blocks of 2 K-byte divisors each, and
the number of memory pages not to be divided were pre-
calculated for each block (see table 3). This version of the
program used a lookup table to determine how many
pages to divide (188 minus the number not to divide) for
each divisor. This technique proved extremely beneficial
because it reduced the computation time from four days
to two.

The 47 K-byte version used virtually all the memory in
a 48 K-byte Apple. The e array occupied hexadecimal lo-
cations 400 thru BFFF. A starting divisor of 28,800
can be divided. The number of bytes to divide for a given
block is calculated as the total number of bytes in the e
array minus the number of insignificant bytes (calculated
as above) corresponding to the minimum divisor of the
block, plus a “guard” byte or two to cover slight calcula-
tion errors.

In a later program that calculated e to 116,000 digits, I
used 47 K bytes (188 pages of 256 bytes each) of memory,
and the maximum divisor was 28,800. The divisors were
resulted in 115,925 digits of precision. Because the result
occupied screen memory, it had to be written to cassette
tape by the calculation program before returning to the
Apple 11 monitor. Because there was no memory avail-
able for a BASIC program, the output formatting pro-
gram was coded in assembly language and resided in
parts of pages 0 and 1. Pages 2 and 3 were used for the
multiply-by-100 tables.

On the Horizon

As with any limitless search, there remains the
challenge to compute e to even greater precision. Unfor-
tunately, the computation time of the specified algorithm
is exponentially related to the precision sought. Divide
operations on high-speed computers (approximately 12

BEST OF BYTE 485

| Steve Wozniak « BYTE magazine * June 1981

Page 0011 of 0013)

Calculating e to 116,000 Places with an Apple][Computer

Listing 6: A partial printout of the value of e. The first line agrees with the fifty-place value for e that
is given in the CRC Standard Mathematical Tables.

E

E=2.71828
62772
81741
82988
76146
55170
70932
46377
93163
66803
30123
78250
59888
48419
30436
76839
17189
06817
66041
13419
75459
44235
01612
01910
69829

LY 4, X

E

92105
05246
87025
12835
71508
15390
53647
88860
91360
53675
34675
61816
78149
70103
14779
84559
23530
53605
06222
99372
73419
02614
28065
36331
12094
70670

hegane

486 BEST OF BYTE

18284
40766
35966
07531
06680
27618
87091
21112
68892
31825
81970
98194
85193
81413
99418
642143
86106
01210
69973
51216
18569
29486
54922
59004
46959

annern

78191
18849
01329
41270
10849
09255
45175
46349
68129
31243
99315
52390
00350
47780
53167
45469
83540
49726
22345

75229

97756
76180
19535
93821
16214
83731

Ric00

59045
30353
29043
95251
82264
38606
27443
52389
30098
28869
68416
55815
45807
63463
49146
78140
87396
05627
29725
65201
56380
36372
78509
91644
30801

NC O

37103
23745
45332
20207
44350
87171
65487
41311
65756
47033
94651
01766
25287
50329
46172
16022
13233
69060
71856
05367
66002
47174
45205
10009
83500
01224

cLnLa

23536
54759
57290
01901
80016
26133
THTON
78442
79312
39849
14039
30175
27386
24496
31409
59271
96552
88023
08868
03059
23637
14174
25778
99828
91529

fALWON

01889
53075
53580
25839
82854
6840k
93189
18752
85836
54826
47870
49884
68236
21540
62087
36876
29248
17111
79415
47850
94279
43228
31735
54432
11558
61413

ANANAA

02874
45713
03342
15738
8UTTY
13845
72306
50569
77361
64651
70198
67173
67385
84875
34317
45635
12671
51930
76966
21236
01621
02388
25620
93150
87211

~0r0oC

79206
75734
45689
94171
58749
95663
25644
41038
11774
37527
25065
85456
07822
14359
27304
896141
64037
76761
07299
20500
41090
89953
36808
124y
83618
62048

ArvADa

71352
82178
95260
34187
11853
83000
96977
53696
78215
05820
37679
61332
89422
60233
38143
49061
54688

33224

40355
67719
12047
93441
92622
56604
72556

rarvhey

40888
90270
28570
17552
91294
99195
08527
42546
56465
08135
27108
05496
10739
59529
82063
42596
31800
O4TTT
52620
03863
10006
28582
95458
19794
42116
92655

anesn~

77572
64274
07381
21540
54424
49338
01416
54499
92295
98294
32823
12509
84998
70419
62531
72085
50354
58539
62268
78675
28364
35743
62779
27786
63964

Crrerey

67667
96298
07965
20151
63115
34218
90918
99203
61061
70818
82350
15776
39146
0u657
69109
89647
02317
66890
05084
26218
81074
62184
80783
16205
9245Y
09467

-

47093
27466
32328
89149
37107
26560
92836
69967
76351
88793
766U
96181
92086
78623
52096
10383
02123
04730
44716
39855
89613
70263
33386
31864
47910

reaAan

14472
87999
91980
09650
66832
36453
19341
54691
98859
04964
65653
11525
87015
47175
95332
10634
47620
15216
78312
80067
45400
60096
14577
23442
02759
07638

r,rr .

69995
39193
62794
93488
53907
29760
81902
94686
48220
32036
80429
88159
80582
20900
18369
75051
40784
41995
25607
89448
42251
75529
56648
15519
14590

cQan

73142
69420
92255
95266
45668
72120
16675
04119
14148
24985
23317
58133
97358
62321
73755
80741
65377
38389
THTUT
09266
76164
76692
58912
13463
07196
65360

Ana .-

PAGE 01

95749 66967
20030 59921
34907 63233
41675 09244
TT449 92069
67371 13200
55151 08657
44549 05987
82698 95193
25094 43117
53118 02328
30416 90351
57492 79610
21609 90235
08887 07016
01157 47704
98193 34321
TT770 93503
98826 51787
96970 96409
64450 78182
44483 37998
16277 25164
56532 44258
40905 86298

Q0hen Ancha

PAGE 10

54467 92350
94595 96100
50560 06197
85113 89757
27992 99186
23678 60865
83563 43975
35443 11321
05799 31872
84646 14797
97738 65666
96184 02706
68589 01529
96640 51540
61090 57837
09928 54648
26163 T1744
T4311 T1418
91909 99688
74104 80602
29525 36246
67581 27030
80203 97005
95653 84078
21537 57018
83015 84761

P

| Steve Wozniak « BYTE magazine * June 1981

Page 0012 of 0013)

Calculating e to 116,000 Places with an Apple][Computer

ps per 32 bits) are two orders of magnitude faster than the
6502 routines. The ultimate approach is to construct a
custom “divide machine.” Current technologies and low
programmable memory prices make it feasible to con-
struct such a machine with a thousand-fold performance
improvement over the 6502 microprocessor. With such a
machine, e could be computed to 100,000,000 digits
within a couple of years (one year constructing and test-
ing, one year computing). Such a machine would require
power supply backup and error-correcting memory. The
memory should be purchased at the latest possible date

due to decreasing prices.

Once a few simple concepts are understood, the com-
putation that I have described is as easy as pi (see listing
6). Why do people spend time computing these numbers
to such absurd precision? Because they're there, I sup-
pose. Who knows what great discoveries will be made by
personal computer owners in the coming years? Rest
assured that a guaranteed place in the mathematics Hall
of Fame awaits the discoverer of the next greatest prime
number.m

What new form of democracy is required? Ours is 200 years old and was designed when it took
weeks and even months for information to move across the country. How should we govern our-
selves in a world where our president can ask the American people, say, their take on an issue, and
then get their accumulated answers live, for all to see, as he talks to them on TV? — Robert
Metcalfe, Principal Inventor of Ethernet and Founder of 3Com (1991:11 p119)

Windows runs sluggishly on any machine slower than a PC AT with a 20-megabyte hard disk
drive — David and Lee Hart, BYTE Authors (1987:6 p250)

p242)

Readers will recall that I am no enthusiast of the key layout on the IBM Personal Computer (PC).
The company has put extra keys between the normal typewriter-key layout's Z key and the Shift
key, and. it has reduced the size of the Return key and moved it far, far away from the home keys.
It's an understatement to say I'm no enthusiast: indeed, I think it is (1) an insult to American
touch-typists and (2) an unmitigated disaster. (I'm reminded of the lawyer who sent a telegram
saying, "Sir: F— You. Strong letter follows.") — Jerry Pournelle, BYTE Columnist (1982:12

(1987:5 p149)

Desktop publishing didn't really make its debut until Apple announced the LaserWriter in
January 1985 — John W. Seybold, Founder of The Seybold Report on Publishing Systems

BEST OF BYTE 487

| Steve Wozniak « BYTE magazine * June 1981

Page 0013 of 0013)

