
khaibitgfx@gmail.com
gfx

30th

Apple II Redbook
Digital Edition

18
"

15
.2

5"
=

(3
8.

7
w

id
th

cm
)

(4
5.

7
cm

)

4.5"(11.3cm)

apple computer

apple
®

The personal computer.

The Apple logo is a trademark of Apple Computer, Inc.,
registered in the U.S. and other countries.

NEW PRODUCTS - NEW INNOVATIONS - SHOP ONLINE

Leading Experts in Retro Computing
SPECIALIZING IN THE APPLE II FAMILY OF PERSONAL COMPUTERS

THINKING OF BUYING
FOR YOUR APPLE II PC?

Elevate your Apple II Experience with ReActiveMicro

info@reactivemicro.com
1 (800) REACTIVE (732-2848)

reactivemicro.com
https://m.facebook.com/reactivemicrousa

Apple Part No. 030-0004-00

APPLE Computer Inc.
10260 Brandley Dr.

Cupertino, CA
95014

January 1978

Reference Manual
APPLE

Simple

TABLE OF CONTENTS

Unpacking

A.

Subroutines
High

APPLE II
GETTING STARTED WITH YOUR

Loading

Check for Shipping Damage

Warranty Registration Card

Power Up

APPLE II

APPLE

Running
and Second Programs

Running

Loading a

Breakout and Color Demos Tapes

Breakout and Color
Demos Program Listings

How to Play Startrek

Speaks

Integer BASIC

Your First

16K Startrek

Program Tape

HIRES Demo Tape

Several Languages

B. APPLE II INTEGER BASIC

BASIC Commands

BASIC Operators

BASIC

BASIC

Functions

Statements

Special Control and Editing

Table A Graphics Colors

Special Controls and Features

BASIC Error Messages

Simpli�ed Memory Map

Data Read/Save Subroutines

T Subroutinesone

Resolution Graphics
and Listings

Additional BASIC Program
Examples

Rod’s Color Pattern (4K)

Pong (4K)

Color Sketch (4K)

Mastermind (8K)

Biorhythm (4K)

Dragon Maze (4K)

C. APPLE II FIRMWARE

System Monitor Commands

Control and Editing Characters

Special Controls and Features

Annotated Monitor and
Dis-assembler Listing

Binary Floating Point Package

Sweet 16 Interpreter Listing

6502 Op Codes

APPLE II HARDWARE

Getting Started with Your
APPLE II Board

APPLE II Switching Power Supply

Interfacing with the Home TV

Simple Serial Output

Interfacing the APPLE
Signals, Loading, Pin
Connections

—

—

Address

Memory

System Timing

Schematics

Options, Expansion, Map,

13.

a.

b.

c.

d.

e.

f.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

1.

2.

3.

4.

6.

7.

5.

8.

9.

10.

11.

12.
7.

8.

6.

5.

4.

3.

2.

1.

D.

7.

6.

5.

1.

2.

3.

4.

1

1

1

2

2

3

3

3

3

4

6

12

14

15

17

18

19

22

23

28

29

30

32

33

34

43

46

. .

. .

.

.

. .

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

—

. .

.

.

.

.

.

.

.

.

. . . .

.

.

.

.

.

.

.

. . . .

.

.

.

. .

.

. .

APPLE Reference Manual

55

55

56

57

69

61

67

68

72

74

76

94

96

100

106

107

110

112

114

122

133

140

141

 GETTING STARTED WITH YOUR APPLE II

Unpacking

Don't throw away the packing material. Save it for the unlikely
event that you may need to return your Apple II for warrantee repair.
If you bought an Apple II Board only, see hardware section in this
manual on how to get started. You should have received the following:

 1. Apple II system including mother printed circuit board
 with specified amount of RAM memory and 8K of ROM memory,
 switching power supply, keyboard, and case assembly.

 2. Accessories Box including the following:
 a. This manual including warranty card.
 b. Pair of Game Paddles
 c. A.C. Power Cord
 d. Cassette tape with "Breakout"on one side
 and "Color Demos" on the other side.
 e. Cassette recorder interface cable (miniature
 phone jack type)

 3. If you purchased a 16K or larger system, your accessory
 box should also contain:
 a. 16K Startrek game cassette with High Resolution
 Graphics Demo ("HIRES") on the flipside.
 b. Applesoft Floating Point Basic Language Cassette
 with an example program on the other side.
 c. Applesoft reference manual

 4. In addition other items such as a vinyl carrying case
 or hobby board peripherial may have been included if
 specifically ordered as "extras".

Notify your dealer or Apple Computer, Inc. immediately if you are
missing any items.

Warranty Registration Card

Fill this card out immediately and completely and mail to Apple in
order to register for one year warranty and to be placed on
owners club mailing list. Your Apple II's serial number is located
on the bottom near the rear edge. You model number is:
 A2S00MMX
 MM is the amount of memory you purchased. For Example:
 A2S0008X
is an 8K Byte Apple II system.

 1

/ /

///

2

Check for Damage

Inspect the outside case of your Apple for shipping damage. Gently
lift up on the top rear of the lid of the case to release the lid
snaps and remove the lid. Inspect the inside. Nothing should be
loose and rattling around. Gently press down on each integrated
circuit to make sure that each is still firmly seated in its
socket. Plug in your game paddles into the Apple II board at the
socket marked "GAME I/O" at location J14. See hardware section of
this manual for additional detail. The white dot on the connector
should be face forward. Be careful as this connector is fragile.
Replace the lid and press on the back top of it to re-snap it into
place.

Power Up

First, make sure that the power ON/OFF switch on the rear power
supply panel on your Apple II is in the "OFF" position. Connect
the A.C. power cord to the Apple and to a 3 wire 120 volt A.C.
outlet. Make sure that you connect the third wire to ground if
you have only a two conductor house wiring system. This ground
is for your safety if there is an internal failure in the Apple
power supply, minimizes the chance of static damage to the Apple,
and minimizes RFI problems.

Connect a cable from the video output jack on the back of the Apple
to a TV set with a direct video input jack. This type of set is
commonly called a "Monitor". If your set does not have a direct
video input, it is possible to modify your existing set. Write for
Apple's Application note on this. Optionally you may connect the
Apple to the antenna terminals of your TV if you use a modulator.
See additional details in the hardware section of this manual under
"Interfacing with the Home TV".

Now turn on the power switch on the back of the Apple. The indicator
light (it's not a switch) on the keyboard should now be ON. If
not, check A.C. connections. Press and release the "Reset" button
on the keyboard. The following should happen: the Apple's internal
speaker should beep, an asterisk ("*") prompt character should appear
at the lower left hand corner of your TV, and a flashing white square
should appear just to the right of the asterisk. The rest of the
TV screen will be made up of radom text characters (typically question marks).

If the Apple beeps and garbage appears but you cannot see an "*" and the
cursor, the horizontal or vertical height settings on the TV need to be
adjusted. Now depress and release the "ESC" key, then hold down the
"SHIFT" key while depressing and releasing the P key. This should
clear your TV screen to all black. Now depress and release the "RESET"
key again. The "*" prompt character and the cursor should return to
the lower left of your TV screen.

/

3

Apple Speaks Several Languages

The prompt character indicates which language your Apple is currently
in. The current prompt character, an asterisk ("*"),indicates that
you are in the "Monitor" language, a powerful machine level language
for advanced programmers. Details of this language are in the
"Firmware" section of this manual.

Apple Integer BASIC

Apple also contains a high level English oriented language called
Integer BASIC, permanently in its ROM memory. To switch to this
language hold down the "CTRL" key while depressing and releasing the
"B" key. This is called a control-B function and is similiar to
the use of the shift key in that it indicates a different function
to the Apple. Control key functions are not displayed on your
TV screen but the Apple still gets the message. Now depress and
release the "RETURN" key to tell Apple that you have finished typing
a line on the keyboard. A right facing arrow (">") called a caret
will now appear as the prompt character to indicate that Apple is
now in its Interger BASIC language mode.

Running Your First and Second Program

Read through the next three sections that include:

 1. Loading a BASIC program Tape
 2. Breakout Game Tape
 3. Color Demo Tape

Then load and run each program tape. Additional information on
Apple II's interger BASIC is in the next section of this manual.

Running 16K Startrek

If you have 16K Bytes or larger memory in your Apple, you will also
receive a "STARTREK" game tape. Load this program just as you did
the previous two, but before you "RUN" it, type in "HIMEM: 16384"
to set exactly where in memory this program is to run.

4

 LOADING A PROGRAM TAPE

INTRODUCTION

 This section describes a procedure for loading BASIC programs
successfully into the Apple II. The process of loading a program is divided
into three section; System Checkout, Loading a Tape and What to do when
you have Loading Problems. They are discussed below.

 When loading a tape, the Apple II needs a signal of about 2 l/2 to 5
volts peak-to-peak. Commonly, this signal is obtained from the "Monitor"

or "earphone" output jack on the tape recorder. Inside most tape recorders,
this signal is derived from the tape recorder's speaker. One can take
advantage of this fact when setting the volume levels. Using an Apple
Computer pre-recorded tape, and with all cables disconnected, play the tape
and adjust the volume to a loud but un-distorted level. You will find that
this volume setting will be quite close to the optimum setting.

 Some tape recorders (mostly those intended for use with hi-fi sets)
do not have an "earphone" or high-level "monitor" output. These machines
have outputs labeled"line output" for connection to the power amplifier.
The signal levels at these outputs are too low for the Apple II in most cases.

 Cassette tape recorders in the $40 - $50 range generally have ALC
(Automatic Level Control) for recording from the microphone input. This feature
is useful since the user doesn't have to set any volume controls to obtain

a good recording. If you are using a recorder which must be adjusted, it
will have a level meter or a little light to warn of excessive recording levels.
Set the recording level to just below the level meter's maximum, or to just a
dim indication on the level lamp. Listen to the recorded tape after you've
saved a program to ensure that the recording is "loud and clear".

 Apple Computer has found that an occasional tape recorder will not function
properly when both Input and Output cables are plugged in at the same time.
This problem has been traced to a ground loop in the tape recorder itself which
prevents making a good recording when saving a program. The easiest solution
is to unplug the "monitor" output when recording. This ground loop does not
influence the system when loading a pre-recorded tape.

/ /

 Tape recorder head alignment is the most common source of tape recorder
problems. If the playback head is skewed, then high frequency information
on pre-recorded tapes is lost and all sorts of errors will result. To confirm
that head alignment is the problem, write a short program in BASIC. >10 END
is sufficient. Then save this program. And then rewind and load the program.
If you can accomplish this easily but cannot load pre-recorded tapes, then
head alignment problems are indicated.

 Apple Computer pre-recorded tapes are made on the highest quality professional
duplicating machines, and these tapes may be used by the service technician to
align the tape recorder's heads. The frequency response of the tape recorder
should be fairly good; the 6 KHz tone should be not more than 3 db down from
a 1 KHz tone, and a 9 KHz tone should be no more than 9 db down. Note that
recordings you have made yourself with mis-aligned heads may not not play
properly with the heads properly aligned. If you made a recording with a
skewed record head, then the tiny magnetic fields on the tape will be skewed as
well, thus playing back properly only when the skew on the tape exactly matches
the skew of the tape recorder's heads. If you have saved valuable programs with
a skewed tape recorder, then borrow another tape recorder, load the programs with
the old tape recorder into the Apple, then save them on the borrowed machine.
Then have your tape recorder properly aligned.

 Listening to the tape can help solve other problems as well. Flaws in the
tape, excessive speed variations, and distortion can be detected this way.
Saving a program several times in a row is good insurance against tape flaws.
One thing to listen for is a good clean tone lasting for at least 3 1/2 seconds
is needed by the computer to "set up" for proper loading. The Apple puts out

this tone for anout 10 seconds when saving a program, so you normally have
6 1/2 seconds of leeway. If the playback volume is too high, you may pick up tape
noise before getting to the set-up tone. Try a lower playback volume.

SYSTEM CHECKOUT

 A quick check of the Apple II computer system will help you spot any
problems that might be due to improperly placed or missing connections between
the Apple II, the cassette interface, the Video display, and the game
paddles. This checkout procedure takes just a few seconds to perform and
is a good way of insuring that everything is properly connected before the
power is turned on.

 5

/

6

 1. POWER TO APPLE - check that the AC power cord is plugged
 into an appropriate wall socket, which includes a "true"
 ground and is connected to the Apple II.

 2. CASSETTE INTERFACE - check that at least one cassette
 cable double ended with miniature phone tip jacks is
 connected between the Apple II cassette Input port and
 the tape recorder's MONITOR plug socket.

 3. VIDEO DISPLAY INTERFACE -
 a) for a video monitor - check that a cable connects
 the monitor to the Apple's video output port.
 b) for a standard television - check that an adapter
 (RF modulator) is plugged into the Apple II (either
 in the video output (K 14) or the video auxiliary
 socket (J148), and that a cable runs between the
 television and the Adapter's output socket.

 4. GAME PADDLE INTERFACE - if paddles are to be used, check
 that they are connected into the Game I/O connector (J14)
 on the right-hand side of the Apple II mainboard.

 5. POWER ON - flip on the power switch in back of the Apple II,
 the "power" indicator on the keyboard will light. Also
 make sure the video monitor (or TV set) is turned on.

 After the Apple II system has been powered up and the video display
presents a random matrix of question marks or other text characters the
following procedure can be followed to load a BASIC program tape:

 1. Hit the RESET key.
 An asterick, "*",should appear on the lefthand side
 of the screen below the random text pattern. A flashing
 white cursor will appear to the right of the asterick.

 2. Hold down the CTRL key, depress and release the B key,
 then depress the "RETURN" key and release the "CTRL" key.
 A right facing arrow should appear on the lefthand side
 of the screen with a flashing cursor next to it. If it
 doesn't, repeat steps 1 and 2.

 3. Type in the word "LOAD" on the keyboard. You should see
 the word in between the right facing arrow and the
 flashing cursor. Do not depress the "RETURN" key yet.

 4. Insert the program cassette into the tape recorder and
 rewind it.

 5. If not already set, adjust the Volume control to 50-70%
 maximum. If present, adjust the Tone control to 80-100%
 maximum.

/ /
/ //

7

 6. Start the tape recorder in "PLAY" mode and now depress
 the "RETURN" key on the Apple II.

 7. The cursor will disappear and Apple II will beep in a
 few seconds when it finds the beginning of the program.
 If an error message is flashed on the screen, proceed
 through the steps listed in the Tape Problem section
 of this paper.

 8. A second beep will sound and the flashing cursor will
 reappear after the program has been successfully loaded
 into the computer.

 9. Stop the tape recorder. You may want to rewind the program
 tape at this time.

 10. Type in the word "RUN" and depress the "RETURN" key.

 The steps in loading a program have been completed and if everying has
 gone satisfactorily the program will be operating now.

LOADING PROBLEMS
 Occasionally, while attempting to load a BASIC program Apple II
beeps and a memory full error is written on the screen. At this time
you might wonder what is wrong with the computer, with the program tape,
or with the cassette recorder. Stop. This is the time when you need
to take a moment and checkout the system rather than haphazardly attempt-
ing to resolve the loading problem. Thoughtful action taken here will
speed in a program's entry. If you were able to successfully turn on the
computer, reset it, and place it into BASIC then the Apple II is probably
operating correctly. Before describing a procedure for resolving this
loading problem, a discussion of what a memory full error is in order.
 The memory full error displayed upon loading a program indicates that
not enough (RAM) memory workspace is available to contain the incoming data.
How does the computer know this? Information contained in the beginning of
the program tape declares the record length of the program. The computer
reads this data first and checks it with the amount of free memory. If
adequate workspace is available program loading continues. If not, the
computer beeps to indicate a problem, displays a memory full error statement,
stops the loading procedure, and returns command of the system to the key-
board. Several reasons emerge as the cause of this problem.

8

Memory Size too Small

 Attempting to load a l6K program into a 4K Apple II will generate this
kind of error message. It is called loading too large of a program. The
solution is straight forward: only load appropriately sized programs into
suitably sized systems.
 Another possible reason for an error message is that the memory pointers
which indicate the bounds of available memory have been preset to a smaller
capacity. This could have happened through previous usage of the "HIMEN:"
and "LOMEN:" statements. The solution is to reset the pointers by BC (CTRL B)
command. Hold the CTRL key down, depress and release the B key, then depress
the RETURN key and release the CTRL key. This will reset the system to max-
imum capacity.

Cassette Recorder Inadjustment
 If the Volume and Tone controls on the cassette recorder are not
properly set a memory full error can occur. The solution is to adjust
the Volume to 50-70% maximum and the Tone (if it exists) to 80-100%
maximum.*
 A second common recorder problem is skewed head azimuth. When
the tape head is not exactly perpendicular to the edges of the magnetic
tape some of the high frequency data on tape can be skipped. This causes
missing bits in the data sent to the computer. Since the first data read
is record length an error here could cause a memory full error to be
generated because the length of the record is inaccurate. The solution:
adjust tape head azimuth. It is recommended that a competent technician
at a local stereo shop perform this operation.
Often times new cassette recorders will not need this adjustment.

*Apple Computer Inc. has tested many types of cassette recorders and so far
 the Panasonic RQ-309 DS (less than $40.00) has an excellent track record
 for program loading.

/ //

/ / / //

/

9

Tape Problems
 A memory full error can result from unintentional noise existing in
a program tape. This can be the result of a program tape starting on its
header which sometimes causes a glitch going from a nonmagnetic to magnetic
recording surface and is interpreted by the computer as the record length.
Or, the program tape can be defective due to false erasure, imperfections
in the tape, or physical damage. The solution is to take a moment and
listen to the tape. If any imperfections are heard then replacement of the
tape is called for. Listening to the tape assures that you know what a
"good" program tape sounds like. If you have any questions about this please
contact your local dealer or Apple for assistance.

 If noise or a glitch is heard at the beginning of a tape advance the
tape to the start of the program and re-Load the tape.

Dealing with the Loading Problem
 With the understanding of what a memory full error is an efficient way
of dealing with program tape loading problems is to perform the following
procedure:

 l. Check the program tape for its memory requirements.
 Be sure that you have a large enough system.

 2. Before loading a program reset the memory pointers
 with the Bc (control B) command.

 3. In special cases have the tape head azimuth
 checked and adjusted.

 4. Check the program tape by listening to it.
 a) Replace it if it is defective, or
 b) start it at the beginning of the program.

 5. Then re-LOAD the program tape into the Apple II.

In most cases if the preceeding is followed a good tape load will result.

UNSOLVED PROBLEMS

 If you are having any unsolved loading problems, contact your
nearest local dealer or Apple Computer Inc.

10

 BREAKOUT GAME TAPE

PROGRAM DESCRIPTION
Breakout is a color graphics game for the Apple II computer. The object of
the game is to "knock-out' all 160 colored bricks from the playing field by
hitting them with the bouncing ball. You direct the ball by hitting it with
a paddle on the left side of the screen. You control the paddle with one of
the Apple's Game Paddle controllers. But watch out: you can only miss the
ball five times!

There are eight columns of bricks. As you penetrate through the wall the
point value of the bricks increases. A perfect game is 720 points; after
five balls have been played the computer will display your score and a
rating such as "Very Good". "Terrible!", etc. After ten hits of the ball,
its speed with double, making the game more difficult. If you break through
to the back wall, the ball will rebound back and forth, racking up points.

Breakout is a challenging game that tests your concentration, dexterity,
and skill.

REQUIREMENTS

 This program will fit into a 4K or greater system.
 BASIC is the programming language used.

PLAYING BREAKOUT

 1. Load Breakout game following instructions in the "Loading
 a BASIC Program from Tape" section of this manual.
 2. Enter your name and depress RETURN key.
 3. If you want standard BREAKOUT colors type in Y or Yes
 and hit RETURN. The game will then begin.
 4. If the answer to the previous questions was N or No
 then the available colors will be displayed. The
 player will be asked to choose colors, represented by a
 number from 0 to 15, for background, even bricks, odd
 bricks, paddle and ball colors. After these have been
 chosen the game will begin.

/

/

/

5. At the end of the game you will be asked if they
want to play again. A Y or Yes response will start
another game. A N or No will exit from the program.

NOTE: A game paddle (15Øk ohm potentiometer) must be connected
to PDL (Ø) of the Game I/O connector for this game.

COLOR DEMO TAPE

PROGRAM DESCRIPTION

COLOR DEMO demonstrates some of the Apple II video graphics

capabilities. In it are ten examples: Lines, Cross, Weaving,

Tunnel, Circle, Spiral, Tones, Spring, Hyperbola, and Color Bars.

These examples produce various combinations of visual patterns

in fifteen colors on a monitor or television screen. For example,

Spiral combines colorgraphics with tones to produce some amusing

patterns. Tones illustrates various sounds that you can produce

with the two inch Apple speaker. These examples also demonstrate

how the paddle inputs (PDL(X)) can be used to control the audio

and visual displays. Ideas from this program can be incorporated

into other programs with a little modification.

REQUIREMENTS

4K or greater Apple II system, color monitor or television,

and paddles are needed to use this program. BASIC is the pro-

gramming language used.

11

12

 5 GOTO 15 45 VLIN J,J+1 AT I: NEXT J,I: TAB 100 IF M THEN V= ABS (V): VLIN

10 Q=(PDL (0)-20)/6: IF Q<0 THEN 5: PRINT “SCORE=0”:PRINT K/2*2,K/2*2+1 AT I:S=S+I/2-

 Q=0: IF Q>=34 THEN Q=34: COLOR= : PRINT : POKE 34,21:S=0:P= 9: VTAB 21: TAB 13: PRINT S

 D: VLIN Q,Q+5 AT 0: COLOR=A: S:L=S:X=19:Y=19:L=6 105 Q= PEEK (-16336)- PEEK (-16336

 IF P>Q THEN 175: IF Q THEN 50 COLOR=A: PLOT X,Y/3:X=19:Y=)+ PEEK (-16336)- PEEK (-16336

 VLIN 0,Q-1 AT 0:P=Q:RETURN RND (120):V=-1:W= RND (5)-)+ PEEK (-16336)- PEEK (-16336

 2:L=L-1: IF L<1 THEN 120: TAB)+ PEEK (-16336)- PEEK (-16336

15 DIM A$(15),B$(10):A=1:B=13: 6: IF L>1 THEN PRINT L;”BALLS L)+ PEEK (-16336)- PEEK (-16336

 C=9:D=6:E=15: TEXT : CALL - EFT”)

 936: VTAB 4: TAB 10: PRINT 55 IF L=1 THEN PRINT “LAST BALL, ” 110 IF S<720 THEN 80

 “*** BREAKOUT ***”:PRINT ;A$: PRINT : FOR I=1 TO 100 115 PRINT “CONGRATULATONS, ”;A$

20 PRINT “ OBJECT IS TO DESTROY : GOSUB 10: NEXT I:M=1:N=0 ;” YOU WIN!”: GOTO 165

 ALL BRICKS”: PRINT : INPUT 60 J=Y+W: IF J>=0 AND J<120 THEN 120 PRINT “YOUR SCORE OF ”;S;” IS “

 “HI, WHAT’S YOUR NAME? ”,A$ 65:W=-W:J=Y: FOR I-1 TO 6:K= ;: GOTO 125+(S/100)*5

 PEEK (-16336): NEXT I 125 PRINT ”TERRIBLE!”: GOTO 165

25 PRINT “STANDARD COLORS ”;A$ 65 I=X+V: IF I<0 THEN 180: GOSUB

 ;: INPUT “Y/N? ”,B$: GR: CALL 170: COLOR=A:K=J/3: IF I>39 130 PRINT “LOUSY.”: GOTO 165

 -936: IF B$(1,1)#”N” THEN 40 THEN 75: IF SCRN(I,K)=A THEN 135 PRINT “POOR.”: GOTO 165

 : FOR I=0 TO 39: COLOR=I/2* 85: IF I THEN 100:N=N+1:V=(140 PRINT “FAIR.”: GOTO 165

 (I(32): VLIN 0,39 AT I N>5)+1:W=(K-P)*2-5:M=1 145 PRINT “GOOD.”: GOTO 165

30 NEXT I: POKE 34,20: PRINT : 70 Z= PEEK (-16336)-PEEK (-16336 150 PRINT “VERY GOOD.”: GOTO 165

 PRINT : PRINT : FOR I=0 TO)+ PEEK (-16336)- PEEK (-16336

 15: VTAB 21+I MOD 2: TAB I+)+ PEEK (-16336)- PEEK (-16336 155 PRINT “EXCELLENT.”: GOTO 165

 I+1: PRINT I;: NEXT I: POKE)+ PEEK (-16336): GOTO 85

 34,22: YTAB 24: PRINT : PRINT 75 FOR I=1 TO 6:M= PEEK (-16336 160 PRINT “NEARLY PERFECT.”

 “BACKGROUND”;): NEXT I:I=X:M=0 165 PRINT “ANOTHER GAME ”;A$;” (Y/N)

35 GOSUB 95:A=E: PRINT “EVEN BRICK” 80 V=-V “;: INPUT A$: IF A$(1,1)=”Y”

 ;:GOSUB 95:B=E: PRINT “ODD BRIC 85 PLOT X,Y/3: COLOR=E: PLOT I, THEN 25: TEXT : CALL -936:

 K”;: GOSUB 95:C=E: PRINT “PADDLE K:X=I:Y=J: GOTO 60 VTAB 10: TAB 10: PRINT “GAME OV

 ”;: GOSUB 95:D=E: PRINT “BALL” 90 PRINT “INVALID, REENTER”; ER”: END

 ;:GOSUB 95 95 INPUT “ COLOR (0 TO 15)”,E: 170 Q=(PDL (0)-20)/6: IF Q<0 THEN

40 POKE 34,20: COLOR=A: FOR I= IF E<0 OR E>15 THEN 90: RETURN Q=0: IF Q>=34 THEN Q=34: COLOR=

 0 TO 39: VLIN 0,39 AT I: NEXT D: VLIN Q,Q+5 AT 0: COLOR=A:

 I: FOR I=20 TO 34 STEP 2: TAB IF P>Q THEN 175: IF Q THEN

 I+1: PRINT I/2-9;: COLOR=B: VLIN 0,Q-1 AT 0:P=Q: RETURN

 VLIN 0,39 AT I: COLOR=C: FOR

 J=I MOD 4 TO 39 STEP 4 175 IF P=Q THEN RETURN : IF Q#34

 THEN VLIN Q+6,39 AT 0:P=Q:

 RETURN

 180 FOR I=1 TO 80:Q= PEEK (-16336

): NEXT I: GOTO 50

PROGRAM LISTING

BREAKOUT GAME
PROGRAM LISTING

13

PROGRAM LISTING

10 DIM C(4): POKE 2,173: POKE 300 J=J+1:J=J MOD 22+1: FOR I=1 700 I= RND (30)+3:J=I+I*5+I*26+

 3,48: POKE 4,192: POKE 5,165 TO 1295: COLOR=I MOD J+7: PLOT 70:K=32767/J*(PDL (0)/10):

 : POKE 6,0: POKE 7,32: POKE (2*I) MOD 37,(3*I) MOD 35: NEXT POKE 0,I: POKE 1,K MOD 256

 8,168: POKE 9,252: POKE 10, I: GOSUB 10000: GOTO 300 : POKE 24,(K)255)+1: CALL 2

 165: POKE 11,1: POKE 12,208 400 FOR I=1 TO 4:C(I)=RND (16) : GOSUB 10000: GOTO 700

 : NEXT I 800 X=3:A=1000:P=A:L=20:W=4:Y=0

20 POKE 13,4: POKE 14,198: POKE 410 FOR I=3 TO 1 STEP -1:C(I+1) :J=1: COLOR=6: HLIN 0,39 AT

 15,24: POKE 16,240: POKE 17 =C(I): NEXT I:C(1)= RND (16 4: COLOR=9: GOSUB 880: COLOR=

 ,5: POKE 18,198: POKE 19,1:): FOR I=1 TO 5: FOR J=1 TO 12: VLIN 5,M-2 AT X

 POKE 20,76: POKE 21,2: POKE 4 810 N=2*A-P-A/W: COLOR=0: GOSUB

 22,0: POKE 23,96 420 COLOR=C(J):L=J*5+14+I:K=39- 880: VLIN 5,39 AT X:X=X+1: IF

30 TEXT : CALL -936: VTAB 4: TAB L: HLIN K,L AT K: YLIN K,L AT X<39 THEN 820:X=3: VLIN 5,39

 8: PRINT “4K COLOR DEMOS”: PRINT L: HLIN K,L AT L: VLIN K,L AT AT 1: VLIN 5,39 AT 2

 : PRINT “1 LINES”: PRINT “2 CROS K: NEXT K,I: GOSUB 10000: GOTO 820 P=A:A=N:Y=A/100: COLOR=12: GOSUB

 S”: PRINT “3 WAVING” 410 880: COLOR=9: VLIN 5,M-2 AT

40 PRINT “4 TUNNEL”: PRINT “5 CIRCL 500 Z=20: GOTO 900 X: COLOR=15: PLOT X-2,M: FOR

 E”: PRINT “6 SPIRAL **”: PRINT 600 COLOR= RND (16): FOR I=0 TO I=0 TO J: NEXT I: GOSUB 10000

 “7 TONES ** ”: PRINT “8 SPRING” 18 STEP 2:J=39-I: HLIN I,J AT : GOTO 810

 I: GOSUB 640: VLIN I,J AT J: 880 M=L-Y:L1=M-1:L2=M+1: VLIN L1,

50 PRINT “9 HYPERBOLA”: PRINT GOSUB 640 L2 AT X-1: VLIN L1,L2 AT X:

 “10 COLOR BARS”: PRINT : PRINT 610 HLIN I+2, J AT J: GOSUB 640 VLIN L1,L2 AT X+1: RETURN

 “** NEEDS PDL(0) CONNECTED” VLIN I+2, J AT I+2: GOSUB 640

 : PRINT : NEXT I 900 I=1+I MOD 15: FOR Y=0 TO 39

60 PRINT “HIT ANY KEY FOR NEW DEMO” 620 COLOR= RND (16): FOR I=18 TO : FOR X=0 TO 39: COLOR=I+(ABS

 :Z=0: PRINT : INPUT “WHICH DEMO 0 STEP -2:J=39-I: VLIN I+2, (20-X)-Z)*(ABS (20-Y)-Z)/25

 # ”,I: GR : IF I>0 AND I<11 J AT I+2: GOSUB 640: HLIN I+ : PLOT X,Y: NEXT X,Y: GOSUB

 THEN GOTO 100+I: GOTO 30 2,J AT J: GOSUB 640 10000: GOTO 900

70 INPUT “WHICH DEMO WOULD YOU LIKE 630 VLIN I,J AT J: GOSUB 640: HLIN 1000 CALL -936

 ”,I: GR : IF I AND I<20 THEN I,J AT I: GOSUB 640: NEXT I: 1010 J=1+K MOD 32: COLOR=J/2: VLIN

 GOTO 100*I: GOTO 30 GOSUB 10000: GOTO 600 0,39 AT 3+J: VTAB 21+(J/2) MOD

100 I=1+I MOD 79: J=I+(I>39)*(79 640 K=I+7:L=K*K*5*K*26+70:L=32767 2: TAB 3+J: IF J MOD 2 THEN

 -I-I): GOSUB 2000: GOSUB 10000 /L*(PDL (0)/10): POKE 0,K: PRINT J/2;: GOSUB 10000: GOTO

 : GOTO 100 POKE 1,L MOD 256: POKE 24, 1010

200 I=1+I MOD 39:J=1: GOSUB 2000 L/256+1: CALL 2: RETURN 2000 COLOR= RND (16); HLIN 0,39 AT

 :J=30-I: GOSUB 2000: GOSUB J: COLOR= RND (16): VLIN 0,

 10000: GOTO 200 39 AT J: RETURN

 10000 IF PEEK (-16384)<128 THEN RETURN

 : POKE -16368,0: POP : GOTO

 30

COLOR DEMO PROGRAM
 LISTING

14

 -.-.-.-.-.-.-.-.-.- APPLE II STARTREK VERSION -.-.-.-.-.-.-.-.-.-.-

 THIS IS A SHORT DESCRIPTION OF HOW TO PLAY STARTREK ON THE

 APPLE COMPUTER.

 THE UNIVERSE IS MADE UP OF 64 QUADRANTS IN AN 8 BY 8 MATRIX.

 THE QUADRANT IN WHICH YOU 'THE ENTERPRISE ' ARE, IS IN WHITE,

 AND A BLOW UP OF THAT QUADRANT IS FOUND IN THE LOWER LEFT

 CORNER. YOUR SPACE SHIP STATUS IS FOUND IN A TABLE TO

 THE RIGHT SIDE OF THE QUADRANT BLOW UP.

 THIS IS A SEARCH AND DESTROY MISSION. THE OBJECT IS TO LONG-RANGE

 SENSE FOR INFORMATION AS TO WHERE KLINGONS (K) ARE, MOVE TO THAT QUADRANT,

 AND DESTROY.

 NUMBERS DISPLAYED FOR EACH QUADRANT DENOTE:

 # OF STARS IN THE ONES PLACE

 # OF BASES IN THE TENS PLACE

 # OF KLINGONS IN THE HUNDREDS PLACE

 AT ANY TIME DURING THE GAME, FOR INSTANCE BEFORE ONE TOTALLY

 RUNS OUT OF ENERGY, OR NEEDS TO REGENERATE ALL SYSTEMS, ONE MOVES TO A

 QUADRANT WHICH INCLUDES A BASE, IONS NEXT TO THAT BASE (B) AT WHICH TIME

 THE BASE SELF-DESTRUCTS AND THE ENTERPRISE (E) HAS ALL SYSTEMS 'GO'

 AGAIN.

 TO PLAY:

 1. THE COMMANDS CAN BE OBTAINED BY TYPING A '0' (ZERO) AND RETURN.

 THEY ARE:

 1. PROPULSION 2. REGENERATE

 3. LONG RANGE SENSORS 4. PHASERS

 5. PHOTON TORPEDOES 6. GALAXY RECORD

 7. COMPUTER 8. PROBE

 9. SHIELD ENERGY 10.DAMAGE REPORT

 11.LOAD PHOTON TORPEDOES

 2. THE COMANDS ARE INVOKED BY TYPING THE NUMBER REFERING TO THEM

 FOLLOWED BY A 'RETURN'.

 A. IF RESPONSE IS 1 THE COMPUTER WILL ASK WARP OR ION AND

 EXPECTS 'W' IF ONE WANTS TO TRAVEL IN THE GALAXY

 BETWEEN QUADRANTS AND AN 'I' IF ONE WANTS ONLY

 INTERNAL QUADRANT TRAVEL.

 DURATION OF WARP FACTOR IS THE NUMBER OF SPACES OR

 QUADRANTS THE ENTERPRISE WILL MOVE.

 COURSE IS COMPASS READING IN DEGREES FOR THE DESI-

 RED DESTINATION.

 B. A 2 REGENERATES THE ENERGY AT THE EXPENSE OF TIME.

 C. A 3 GIVES THE CONTENTS OF THE IMMEDIATE. ADJACENT QUADRANTS.

 THE GALAXY IS WRAP-AROUND IN ALL DIRECTIONS.

 D. 4 FIRES PHASERS AT THE EXPENSE OF AVAILABLE ENERGY.

 E. 5 INITIATES A SET OF QUESTIONS FOR TORPEDO FIRING.

 THEY CAN BE FIRED AUTOMATICALLY IF THEY HAVE

 BEEN LOCKED ON TARGET WHILE IN THE COMPUTER

 MODE, OR MAY BE FIRED MANUALLY IF THE TRAGECTORY ANGLE

 IS KNOWN.

 F. 6, 8 AND 10 ALL GIVE INFORMATION ABOUT THE STATUS OF THE SHIP

 AND ITS ENVIRONMENT.

 G. 9 SETS THE SHIELD ENERGY/AVAILABLE ENERGY RATIO.

 H. 11 ASKS FOR INFORMATION ON LOADING AND UNLOADING OF

 PHOTON TORPEDOES AT THE ESPENSE OF AVAILABLE ENERGY.

 THE ANSWER SHOULD BE A SIGNED NUMBER. FOR EXAMPLE

 +5 OR -2.

 I. 7 ENTERS A COMPUTER WHICH WILL RESPOND TO THE FOLLOWING

 INSTRUCTIONS:

 1. COMPUTE COURSE 2. LOCK PHASERS

 3. LOCK PHOTON TORPEDOES

 4. LOCK COURSE 5. COMPUTE TREJECTORY

 6. STATUS 7. RETURN TO COMAND MODE

 IN THE FIRST FIVE ONE WILL HAVE TO GIVE COORDINATES.

 COORDINATES ARE GIVEN IN MATHMATICAL NOTATION WITH

 THE EXCEPTION THAT THE 'Y' VALUE IS GIVEN FIRST.

 AN EXAMPLE WOULD BE 'Y,X'

 COURSE OR TRAJECTORY:

 0

 !

 !

 !

 !

 270-------------+-------------90

 !

 !

 !

 180

 -.-.-.-.-.-.-.- THIS EXPLANATION WAS WRITTEN BY ELWOOD -.-.-.-.-.-.-.-.-

 NOT RESPONSIBLE FOR

 ERRORS

LOADING THE HI-RES DEMO TAPE

PROCEDURE

l. Power up system - turn the AC power switch in the back
of the Apple II on. You should see a random matrix of
question marks and other text characters. If you don't,
consult the operator's manual for system checkout pro-
cedures.

2. Hit the RESET key. On the left hand side of the screen
you should see an asterisk and a flashing cursor next to
it below the text matrix.

3. Insert the HI-RES demo tape into the cassette and rewind
it. Check Volume (5Ø-7Ø%) and Tone (8Ø-1ØØ%) settings.

4. Type in "CØØ.FFFR" on the Apple II keyboard. This is the
address range of the high resolution machine language sub-
program. It extends from $CØØ to $FFF. The R tells the
computer to read in the data. Do not depress the "RETURN"
key yet.

5. Start the tape recorder in playback mode and depress the
"RETURN" key. The flashing cursor disappears.

6. A beep will sound after the program has been read in.
STOP the tape recorder. Do not rewind the program tape yet.

7. Hold down the "CTRL" key, depress and release the B key,
then depress the "RETURN" key and release the "CTRL" key.
You should see a right facing arrow and a flashing cursor.
The Bc command places the Apple into BASIC initializing
the memory pointers.

8. Type in "LOAD", restart the tape recorder in playback mode
and hit the "RETURN" key. The flashing cursor disappears.
This begins the loading of the BASIC subprogram of the
HI-RES demo tape.

9. A beep will sound to indicate the program is being loaded.

15

l0. A second beep will sound, and the right facing arrow
will reappear with the flashing cursor. STOP the
tape recorder. Rewind the tape.

ll. Type in "HIMEM:8l92" and hit the "RETURN" key. This
sets up memory for high resolution graphics.

l2. Type in "RUN" and hit the "RETURN" key. The screen
should clear and momentarily a HI-RES demo menu table
should appear. The loading sequence is now completed.

SUMMARY OF HI-RES DEMO TAPE LOADING

l. RESET

2. Type in CØØ.FFFR

3. Start tape recorder, hit RETURN

4. Asterick or flashing cursor reappear
Bc (CTRL B) into BASIC

5. Type in "LOAD", hit RETURN

6. BASIC prompt (7) and flashing cursor
reappear. Type in "HIMEN:8192", hit
RETURN

7. Type in "RUN", hit RETURN

8. STOP tape recorder, rewind tape.

16

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.

BASIC Commands
BASIC Operators
BASIC Functions
BASIC Statements
Special Control and Editing

APPLE II INTEGER BASIC

Special Controls and Features
BASIC Error Messages
Simpfilied Memory Map
Data Read Save Subroutines
Simple Tone Subroutires
High Resolution Graphics
Additional BASIC Program Examples

Graphics ColorsTable A ‑

BASIC COMMANDS

Commands are executed immediately; they do not require line numbers.Most Statements
(see Basic Statements Section) may also be used as commands. Remember to press
Return key after each command so that Apple knows that you have finished that
line. Multiple commands (as opposed to statements) on same line separated by
a " : " are NOT allowed.

COMMAND NAME

AUTO

AUTO

CLR

CON

DEL

DEL

DSP

HIMEM

GOTO

GR

LIST

LIST

LIST

Sets automatic line numbering mode. Starts at line
number and increments line numbers by 10. To
exit AUTO mode, type a control X*, then type the
letters "MAN" and press the return key.

Same as above execpt increments line numbers by
number

Clears current BASIC variables; undimensions arrays.
Program is unchanged.

Continues program execution after a stop from a
control C*. Does not change variables.

Deletes line number

Deletes program from line number through line
number

Sets debug mode that will display variable every
time that it is changed along with the line number
that caused the change. (NOTE: RUN command clears
DSP mode so that DSP command is effective only if
program is continued by a CON or GOTO command.)

Sets highest memory location for use by BASIC at
location specified by expression in decimal.
HIMEM: may not be increased without destroying program.
HIMEM: is automatically set at maximum RAM memory when
BASIC is entered by a control B*.

Causes immediate jump to line number specified by
expression

Sets mixed color graphics display mode. Clears screen
to black. Resets scrolling window. Displays 4Øx4Ø
squares in 15 colors on top of screen and 4 lines of text
at bottom.

Lists entire program on screen.

Lists program line number

Lists program line number through line number

num

num1, num2

num1,

num1, num2

var

expr

expr

num1

num1, num2

num

num2.

num1.

num1

var

expr

expr.

num1
num2.

num2.

num1.

18

LOAD expr.

LOMEM: expr

MAN

NEW

NO DSP var

NO TRACE

RUN

RUN expr

SAVE

TEXT

TRACE

19

Reads (Loads) a BASIC program from cassette tape.
Start tape recorder before hitting return key. Two
beeps and a " > " indicate a good load. "ERR" or "MEM"
FULL ERR" message indicates a bad tape or poor recorder
performance.

Similar to HIMEM: except sets lowest memory location
available to BASIC. Automatically set at 2Ø48 when
BASIC is entered with a control B*. Moving LOMEM:
destroys current variable values.

Clears AUTO line numbering mode to all manual line
numbering after a control C* or control X*.

Clears (Scratches) current BASIC program.

Clears DSP mode for variable var.

Clears TRACE mode.

Clears variables to zero, undimensions all arrays and
executes program starting at lowest statement line
number.

Clears variables and executes program starting at line
number specified by expression expr.

Stores (saves) a BASIC program on a cassette tape.
Start tape recorder in record mode prior to hitting
return key.

Sets all text mode. Screen is formated to display
alpha-numeric characters on 24 lines of 4Ø characters
each. TEXT resets scrolling window to maximum.

Sets debug mode that displays line number of each
statement as it is executed.

* Control characters such as control X or control C are
typed by holding down the CTRL key while typing the
specified letter. This is similiar to how one holds
down the shift key to type capital letters. Control
characters are NOT displayed on the screen but are
accepted by the computer. For example, type several
control G's. We will also use a superscript C to indicate
a control character as in Xc.

BASIC Operators

Symbol Sample Statement Explanation

Prefix Operators

20

() lØ X= 4*(5 + X)

+ 2Ø X= 1+4*5

- 3Ø ALPHA =
 -(BETA +2)

NOT 4Ø IF A NOT B THEN
 2ØØ

Arithmetic Operators

6Ø Y = X 3

 * 7Ø LET DOTS=A*B*N2

 8Ø PRINT GAMMA/S /

MOD 9Ø X = 12 MOD 7
lØØ X = X MOD(Y+2)

 + llØ P = L + G

 - l2Ø XY4 = H-D

 = l3Ø HEIGHT=15
 l4Ø LET SIZE=7*5
 l5Ø A(8) = 2
 l55 ALPHA$ = "PLEASE"

Expressions within parenthesis ()
are always evaluated first.

Optional; +l times following expression.

Negation of following expression.

Logical Negation of following expression;
Ø if expression is true (non-zero), l
if expression is false (zero).

Exponentiate as in X3 . NOTE: is
shifted letter N.

Multiplication. NOTE: Implied multi-
plication such as (2 + 3)(4) is not
allowed thus N2 in example is a variable
not N * 2.

Divide

Modulo: Remainder after division of
first expression by second expression.

Add

Substract

Assignment operator; assigns a value to
a variable. LET is optional

21

Relational and Logical Operators

The numeric values used in logical evaluation are "true" if non-zero,
"false" if zero.

Symbol Sample Statement Explanation

Expression "equals" expression.

String variable "equal'string variable.

Expression "does not equal" expression.

String variable "does not equal" string
variable. NOTE: If strings are not
the same length, they are considered
un-equal. < > not allowed with strings.

Expression "is greater than" expression.

Expression "is less than" expression.

Expression "is greater than or equal to"
expression.

Expression "is less than or equal to"
expression.

Expression l "and" expression 2 must
both be "true" for statements to be true.

If either expression l or expression 2
is "true", statement is "true".

 = l6Ø IF D = E
 THEN 5ØØ

 = l7Ø IF A$(l,l)=
 "Y" THEN 500

or < > l8Ø IF ALPHA #X*Y
 THEN 5ØØ

 # l9Ø IF A$ # "NO"
 THEN 5ØØ

 > 2ØØ IF A>B
 THEN GO TO 5Ø

 < 2lØ IF A+l<B-5
 THEN 1ØØ

 >= 22Ø IF A>=B
 THEN 1ØØ

 <= 23Ø IF A+l<=B-6
 THEN 2ØØ

 AND 24Ø IF A>B AND
 C<D THEN 2ØØ

 OR 25Ø IF ALPHA OR
 BETA+1 THEN 2ØØ

22

300 PRINT ABS(X) Gives absolute value of the expression expr.

310 PRINT ASC("BACK") Gives decimal ASCII value of designated
320 PRINT ASC(B$) string variable str. If more than one
330 PRINT ASC(B$(4,4))character is in designated string or
335 PRINT ASC(B$(Y)) sub-string, it gives decimal ASCII
 value of first character.
340 PRINT LEN(B$) Gives current length of designated
 string variable str$;i.e., number of
 characters.

350 PRINT PDL(X) Gives number between Ø and 255 corresponding
 ponding to paddle position on game paddle
 number designated by expression expr and must
 be legal paddle (Ø,1,2,or 3) or else 255 is
 returned.

360 PRINT PEEK(X) Gives the decimal value of number stored
 of decimal memory location specified by
 expression expr. For MEMORY locations
 above 32676, use negative number; i.e.,
 HEX location FFFØ is -16

370 PRINT RND(X) Gives random number between V and
 (expression expr -1) if expression expr
 is positive; if minus, it gives random
 number between Ø and (expression expr +1).

380 PRINT SCRN (X1,Y1)Gives color (number between Ø and 15) of
 screen at horizontal location designated
 by expression exprl and vertical
 location designated by expression expr2
 Range of expression exprl is Ø to 39. Range
 of expression expr2 is Ø to 39 if in standar
 mixed colorgraphics display mode as set by
 GR command or Ø to 47 if in all color mode
 set by POKE -163Ø4 ,Ø: POKE - 163Ø2,Ø'.

39Ø PRINT SGN(X) Gives sign (not sine) of expression expr
 i.e., -1 if expression expr is negative,zero
 zero and +1 if expr is positive.

BASIC FUNCTIONS

Functions return a numeric result. They may be used as expressions or as part
of expressions. PRINT is used for examples only, other statements may
be used. Expressions following function name must be enclosed between two
parenthesis signs.
FUNCTION NAME

 ABS (expr)

 ASC (str$)

 LEN (str$)

 PDL (expr)

 PEEK (expr)

 RND (expr)

 SCRN(expr1,
 expr2)

 SGN (expr)

BASIC STATEMENTS

Each BASIC statement must have a line number between Ø and 32767. Variable
names must start with an alpha character and may be any number of alpha-
numeric characters up to 1ØØ. Variable names may not contain buried any
of the following words: AND, AT, MOD, OR, STEP, or THEN. Variable names may
not begin with the letters END, LET, or REM. String variables names must end
with a $ (dollar sign). Multiple statements may appear under the same line number
if separated by a : (colon) as long as the total number of characters in the line
(including spaces) is less than approximately 15Ø characters
Most statements may also be used as commands. BASIC statements are executed
by RUN or GOTO commands.

Causes execution of a machine level
language subroutine at decimal memory
location specified by expression expr
Locations above 32767 are specified using
negative numbers; i.e., location in
example 1Ø is hexidecimal number $FC53

In standard resolution color (GR)
graphics mode, this command sets screen
TV color to value in expression expr
in the range Ø to 15 as described in
Table A. Actually expression expr may be
in the range Ø to 255 without error message
since it is implemented as if it were
expression expr MOD 16.

The DIM statement causes APPLE II to
reserve memory for the specified variables.
For number arrays APPLE reserves
approximately 2 times expr bytes of memory
limited by available memory. For string
arrays -str$- (expr) must be in the range of
1 to 255. Last defined variable may b'e
redimensioned at any time; thus, example
in line is illegal but 85 is allowed.

Sets debug mode that DSP variable var each
time it changes and the line number where the
change occured.

NAME

CALL expr

COLOR=expr

DIM varl (expr1)
 str$ (expr2)
 var2 (expr3)

DSPvar

 1Ø CALL-936

 3Ø COLOR=12

 5Ø DIM A(2Ø),B(1Ø)
 6Ø DIM B$(3Ø)
 7Ø DIM C (2)
Illegal:
 8Ø DIM A(3Ø)
Legal:
 85 DIM C(1ØØØ)

Legal:
 9Ø DSP AX: DSP L
Illegal:
 1ØØ DSP AX,B
 1Ø2 DSP AB$
 1Ø4 DSP A(5)
Legal:
 1Ø5 A=A(5): DSP A

23

NAME

END

FOR var=
 exp'21 TOexpr2
STEPexpr3

GOSUB expr

GOTO expr

GR

HLIN expr1,
 expr2ATexpr3

Note:

 EXAMPLE

11Ø END

11Ø FOR L=Ø to 39
12Ø FOR X=Y1 TO Y3
13Ø FOR 1=39 TO 1
15Ø GOSUB 1ØØ *J2

14Ø GOSUB 5ØØ

16Ø GOTO 2ØØ
17Ø GOTO ALPHA+1ØØ

18Ø GR
19Ø GR: POKE -163Ø2,Ø

2ØØ HLIN Ø,39 AT 2Ø
21Ø HLIN Z,Z+6 AT I

HLIN Ø, 19 AT Ø is a horizontal line at the top of the screen
extending from left corner to center of screen and HLIN 2Ø,39 AT
39 is a horizontal line at the bottom of the screen extending from
center to right corner.

 DESCRIPTION

Stops program execution. Sends carriage
return and "> " BASIC prompt) to screen.

Begins FOR...NEXT loop, initializes
variable var to value of expression expr1
then increments it by amount in expression
expr3 each time the corresponding "NEXT"
statement is encountered, until value of
expression expr2 is reached. If STEP expr3
is omitted, a STEP of +1 is assumed. Negative
numbers are allowed.

Causes branch to BASIC subroutine starting
at legal line number specified by expression
expr Subroutines may be nested up to
16 levels.

Causes immediate jump to legal line
number specified by expression expr.

Sets mixed standard resolution color
graphics mode. Initializes COLOR = Ø
(Black) for top 4Øx4Ø of screen and sets
scrolling window to lines 21 through 24
by 4Ø characters for four lines of text
at bottom of screen. Example 19Ø sets
all color mode (4Øx48 field) with no text
at bottom of screen.

In standard resolution color graphics mode,
this command draws a horizontal line of a
predefined color (set by COLOR=) starting
at horizontal position defined by expression
exprl and ending at position expr2 at
vertical position defined by expression
expr3 .expr1 and expr2 must be in the range
of Ø to 39 and expr1 < = expr2 . expr3
be in the range of Ø to 39 (or Ø to 47 if not
in mixed mode).

24

If expression is true (non-zero) then
execute statement; if false do not
execute statement. If statement
is an expression, then a GOTO expr
type of statement is assumed to be implied.
The "ELSE" in example 26Ø is illegal but
may be implemented as shown in example 27Ø.

Enters data into memory from I/O
device. If number input is expected,
APPLE wil output "?"; if string input is
expected no "?" will be outputed. Multiple
numeric inputs to same statement may be
separated by a comma or a carriage return.
String inputs must be separated by a
carriage return only. One pair of " " may
be used immediately after INPUT to output
prompting text enclosed within the quotation
marks to the screen.

Transfers source of data for subsequent
INPUT statements to peripheral I/O slot
(1-7) as specified as by expression expr.
Slot Ø is not addressable from BASIC.
IN#Ø (Example 33Ø) is used to return data
source from peripherial I/O to keyboard
connector.

Assignment operator. "LET" is optional

Causes program from line number num1
through line number num2 to be displayed
on screen.

Increments corresponding "FOR" variable
and loops back to statement following
"FOR" until variable exceeds limit.

Turns-off DSP debug mode for variable

Turns-off TRACE debug mode

 22Ø IF A> B THEN
 PRINT A
 23Ø IF X=Ø THEN C=1
 24Ø IF A#1Ø THEN
 GOSUB 2ØØ
 25Ø IF A$(1,1)# "Y"
 THEN 1ØØ
Illegal:
 26Ø IF L> 5 THEN 5Ø:
 ELSE 6Ø
Legal:
 27Ø IF L> 5 THEN 5Ø
 GO TO 6Ø

 28Ø INPUT X,Y,Z(3)
 29Ø INPUT "AMT",
 DLLR
 3ØØ INPUT "Y or N?", A$

 31Ø IN# 6
 32Ø IN# Y+2
 33Ø IN# 0

 34Ø LET X=5

 35Ø IF X > 6 THEN
 LIST 5Ø

 36Ø NEXT I
 37Ø NEXT J,K

 38Ø NO DSP I

 39Ø NO TRACE

IF expression
THEN statement

INPUT varl,
 var2, str$

IN# expr

LET

LIST num1,
 num2

NEXT varl,
 var2

NO DSP var

NO TRACE

25

In standard resolution color
graphics, this command plots a small
square of a predefined color (set
by COLOR=) at horizontal location
specified by expression expr1 in
range Ø to 39 and vertical location
specified by expression expr2 in range
Ø to 39 (or Ø to 47 if in all graphics
mode) NOTE: PLOT Ø Ø is upper left
and PLOT 39, 39 (or PLOT 39, 47) is
lower right corner.

Stores decimal number defined by
expression expr2 in range of Ø
255 at decimal memory location
specified by expression expr1
Locations above 32767 are specified
by negative numbers.

"POPS" nested GOSUB return stack
address by one.

Outputs data specified by variable
var or string variable str$ starting
at current cursor location. If there
is not trailing "," or ";" (Ex 45Ø)
a carriage return will be generated.

Commas (Ex. 46Ø) outputs data in 5
left justified columns. Semi-colon
(Ex. 47Ø) inhibits print of any spaces.
Text imbedded in " " will be printed
and may appear multiple times.

Like IN#, transfers output to I/O
slot defined by expression expr PR#
Ø is video output not I/O slot Ø.

No action. All characters after REM
are treated as a remark until terminated
by a carriage return.

Causes branch to statement following
last GOSUB; i.e., RETURN ends a
subroutine. Do not confuse "RETURN"
statement with Return key on keyboard.

PLOT expr1, expr2

POKE expr1, expr2

POP

PRINT var1, var, str$

PR# expr

REM

RETURN

4ØØ PLOT 15, 25
4ØØ PLT XV,YV

42Ø POKE 2Ø, 4Ø
430 POKE 7*256,
 XMOD255

44Ø POP

45Ø PRINT Ll
46Ø PRINT Li, X2
47Ø PRINT "AMT=";DX
48Ø PRINT A$;B$;
49Ø PRINT
492 PRINT "HELLO"
494 PRINT 2+3

500 PR# 7

5l0 REM REMARK

52Ø RETURN
53Ø IFX= 5 THEN
 RETURN

26

TAB expr

TEXT

TRACE

VLIN exprl, expr2
AT expr3

VTAB expr

53Ø TAB 24 Moves cursor to absolute horizontal
54Ø TAB 1+24 position specified by expression
55Ø IF A#B THEN expr in the range of 1 to 4Ø. Position
 TAB 2Ø is left to right

55Ø TEXT Sets all text mode. Resets
56Ø TEXT: CALL-936 scrolling window to 24 lines by 4Ø
 characters. Example 56Ø also clears
 screen and homes cursor to upper left
 corner

570 TRACE Sets debug mode that displays each
580 IFN >32ØØØ line number as it is executed.
 THEN TRACE

59Ø VLIN Ø, 39AT15 Similar to HLIN except draws vertical
6ØØ VLIN Z,Z+6ATY line starting at expr1 and ending at

expr2 at horizontal position expr3.

61Ø VTAB 18 Similar to TAB. Moves cursor to
62Ø VTAB Z+2 absolute vertical position specified
 by expression expr in the range l to
 24. VTAB l is top line on screen;
 VTAB24 is bottom.

27

28

SPECIAL CONTROL AND EDITING CHARACTERS

"Control" characters are indicated by a super-scripted "C" such as Gc. They
are obtained by holding down the CTRL key while typing the letter.
Control characters are NOT displayed on the TV screen. Bc and Cc must be
followed by a carriage return. Screen editing characters are indicated by a
sub-scripted "E" such as DE. They are obtained by pressing and releasing the
ESC key then typing specified letter. Edit characters send information only
to display screen and does not send data to memory. For example, Uc moves to
cursor to right and copies text while AE moves cursor to right but does not
copy text.

CHARACTER DESCRIPTION OF ACTION

RESET key

Control B

Control C

Control G

Control H

Control J

Control V

Control X

 Immediately interrupts any program execution and resets
 computer. Also sets all text mode with scrolling window
 at maximum. Control is transfered to System Monitor and
 Apple prompts with a "*" (asterisk) and a bell. Hitting
 RESET key does NOT destroy existing BASIC or machine
 language program.

 If in System Monitor (as indicated by a "*"), a control
 B and a carriage return will transfer control to BASIC,
 scratching (killing) any existing BASIC program and set
 HIMEM: to maximum installed user memory and LOMEM:
 to 2048.

 If in BASIC, halts program and displays line number
 where stop occurred*. Program may be continued with a
 CON command. If in System Monitor, (as indicated by "*"),
 control C and a carraige return will enter BASIC without
 killing current program.

 Sounds bell (beeps speaker)

 Backspaces cursor and deletes any overwritten characters
 from computer but not from screen. Apply supplied
 keyboards have special key "←" on right side of keyboard
 that provides this functions without using control button.

 Issues line feed only

 Compliment to HC. Forward spaces cursor and copies over
 written characters. Apple keyboards have “→” key on
 right side which also performs this function.

 Immediately deletes current line.

* If BASIC program is expecting keyboard input, you will have
 to hit carriage return key after typing control C.

29

CHARACTER DESCRIPTION OF ACTION

 AE Move cursor to right

 BE Move cursor to left

 CE Move cursor down

 DE Move cursor up

 EE Clear text from cursor to end of line

 FE Clear text from cursor to end of page

 @E Home cursor to top of page, clear text to end of page.

Table A: APPLE II COLORS AS SET BY COLOR =

Note: Colors may vary depending on TV tint (hue) setting and may also
 be changes by adjusting trimmer capacitor C3 on APPLE II P.C. Board.

 0 = Black 8 = Brown
 1 = Magnenta 9 = Orange
 2 = Bark Blue 10 = Grey
 3 = Light Purple 11 = Pink
 4 = Dark Green 12 = Green
 5 = Grey 13 = Yellow
 6 = Medium Blue 14 = Blue/Green
 7 = Light Blue 15 = White

Special Controls and Features

Hex BASIC Example Description

Display Mode Controls

CO5Ø
CO51
CO52
CO53
CO54

CO55
CO56
CO57

TEXT Mode Controls

ØØ2Ø

ØØ21

ØØ22

ØØ23

ØØ24

ØØ25

ØØ32

FC58

FC42

30

lØ POKE -l63Ø4,Ø
2Ø POKE -l63Ø3,Ø
3Ø POKE -l63Ø2,Ø
4Ø POKE -l63Ø1,Ø
5Ø POKE -l63ØØ,Ø

6Ø POKE -l6299,Ø
7Ø POKE -l6298,Ø
8Ø POKE -l6297,Ø

9Ø POKE 32,L1

1ØØ POKE 33,W1

11Ø POKE 34,T1

12Ø POKE 35,B1

13Ø CH=PEEK(36)
14Ø POKE 36,CH
15Ø TAB(CH+l)

16Ø CV=PEEK (37)
17Ø POKE 37,CV
18Ø VTAB(CV+l)

19Ø POKE 5Ø,l27
2ØØ POKE 5Ø,255

21Ø CALL -936

22Ø CALL -958

Set color graphics mode
Set text mode
Clear mixed graphics
Set mixed graphics (4 lines text)
Clear display Page. 2 (BASIC commands
 use Page l only)
Set display to Page 2 (alternate)
Clear HIRES graphics mode
Set HIRES graphics mode

Set left side of scrolling window
to location specified by Ll in
range of Ø to 39.

Set window width to amount specified
by WI. Ll+W1<4Ø. Wl>Ø

Set window top to line specified
by Tl in range of Ø to 23

Set window bottom to line specified
by Bl in the range of Ø to 23. B1>T1

Read/set cusor horizontal position
in the range of Ø to 39. If using
TAB, you must add "1" to cusor positior
read value; Ex. 14Ø and 15Ø perform
identical function.

Similar to above. Read/set cusor vertical
position in the range Ø to 23.

Set inverse flag if 127 (Ex. l9Ø)
Set normal flag if 255(Ex. 2ØØ)

(@E) Home cusor, clear screen

(FE) Clear from cusor to end of page

 Hex BASIC Example Description

 FC9C 23Ø CALL -868 (EE) Clear from cusor to end of line

 FC66 24Ø CALL -922 (JC) Line feed

 FC7Ø 25Ø CALL -9l2 Scroll up text one line

Miscellaneous

CØ3Ø 36Ø X=PEEK(-l6336) Toggle speaker
 365 POKE -l6336,Ø

CØØØ 37Ø X=PEEK(-16384) Read keyboard; if X>127 then key was
 pressed.

CØlØ 38Ø POKE -l6368,Ø Clear keyboard strobe - always after
 reading keyboard.

CØ6l 39Ø X=PEEK(16287) Read PDL(Ø) push button switch. If
 X>l27 then switch is "on".

CØ62 4ØØ X=PEEK(-l6286) Read PDL(l) push button switch.

CØ63 4lØ X=PEEK(-l6285) Read PDL(2) push button switch.

CØ58 42Ø POKE -l6296,Ø Clear Game I/O ANØ output

CØ59 43Ø POKE -l6295,Ø Set Game I/O ANØ output

CØ5A 44Ø POKE -l6294,Ø Clear Game I/O ANl output

CØ5B 45Ø POKE -l6293,Ø Set Game I/O ANl output

CØ5C 46Ø POKE -l6292,Ø Clear Game I/O AN2 output

CØ5D 47Ø POKE -l629l,Ø Set Game I/O AN2 output

CØ5E 48Ø POKE -l629Ø,Ø Clear Game I/O AN3 output

CØ5F 49Ø POKE -l6289,Ø Set Game I/O AN3 output

31

APPLE II BASIC ERROR MESSAGES

Results from a syntactic or typing error.

A value entered or calculated was less than
-32767 or greater than 32767.

A value restricted to the range Ø to 255 was
outside that range.

Results from an attempt to branch to a non-
existant line number.

Results from an attempt to execute more RETURNs
than previously executed GOSUBs.

Results from an attempt to execute a NEXT state-
ment for which there was not a corresponding
FOR statement.

Results from more than l6 nested GOSUBs.

Results from more than l6 nested FOR loops.

The last statement executed was not an END.

The memory needed for the program has exceeded
the memory size allotted.

Results from more than l2 nested parentheses or
more than l28 characters in input line.

Results from an attempt to DIMension a string
array which has been previously dimensioned.

An array was larger than the DIMensioned
value or smaller than l or HLIN,VLIN,
PLOT, TAB, or VTAB arguments are out of
range.

The number of characters assigned to a string
exceeded the DIMensioned value for that string.

Results from an attempt to execute an illegal
string operation.

Results from illegal data being typed in response
to an INPUT statement. This message also requests
that the illegal item be retyped.

32

*** SYNTAX ERR

*** > 32767 ERR

*** > 255 ERR

*** BAD BRANCH ERR

*** BAD RETURN ERR

*** BAD NEXT ERR

*** 16 GOSUBS ERR

*** 16 FORS ERR

*** NO END ERR

*** MEM FULL ERR

*** TOO LONG ERR

*** DIM ERR

*** RANGE ERR

*** STR OVFL ERR

*** STRING ERR

 RETYPE LINE

Simplified Memory Map

FFFF 64K

56K

Monitor and BASIC Routines in ROM

Future enhancement or user supplied
PROMS

CØØØ

XX

7FF

4ØØ

Ø

(HIMEM:)

Peripheral I/O
48K

XX

52K

User specified RAM memory size

User Workspace

Screen Memory

Internal Workspace

(LOMEM:)
2K

1K

Ø

DØØØ

EØØØ

33

34

READ/SAVE DATA SUBROUTINE

INTRODUCTION

 Valuable data can be generated on the Apple II computer and sometimes
it is useful to have a software routine that will allow making a permanent
record of this information. This paper discusses a simple subroutine that
serves this purpose.
 Before discussing the Read/Save routines a rudimentary knowledge of
how variables are mapped into memory is needed.
 Numeric variables are mapped into memory with four attributes. Appearing
in order sequentually are the Variable Name, the Display Byte, the Next Variable
Address, and the Data of the Variable. Diagramatically this is represented as:

YN DSP NVA DATA(0) DATA(l) , DATA(N)

l h h h +l

VARIABLE NAME - up to 100 characters
represented in memory as ASCII equi-
valents with the high order bit set.

DSP (DISPLAY) BYTE - set to 0l when
DSP set in BASIC initiates a process
that displays this variable with the
line number every time it is changed
within a program.

NVA (NEXT VARIABLE ADDRESS) - two
bytes (first low order, the second
high order) indicating the memory
location of the next variable.

DATA - hexadecimal equivalent of
numeric information, represented
in pairs of bytes, low order byte
first.

l 2 n

35

String variables are formatted a bit differently than numeric ones.

These variables have one extra attribute - a string terminator which desig-

nates the end of a string. A string variable is formatted as follows:

VARIABLE NAME - up to lØØ characters
represented in memory as ASCII equi-
valents with the high order bit set.

DSP (DISPLAY) BYTE - set to Øl when
DSP set in BASIC, initiates a process
that displays this variable with the
line number every time it is changed
within a program.

NVA (NEXT VARIABLE ADDRESS) - two
bytes (first low order, the second
high order) indicating the memory
location of the next variable.

DATA - ASCII equivalents with high
order bit set.

STRING TERMINATOR (ST) - none high
order bit set character indicating
END of string.

 There are two parts of any BASIC program represented in memory. One is
the location of the variables used for the program, and the other is the actual
BASIC program statements. As it turns out, the mapping of these within memory
is a straightforward process. Program statements are placed into memory starting
at the top of RAM memory* unless manually shifted by the "HIMEM:." command, and
are pushed down as each new (numerically larger) line numbered statement is
entered into the system. Figure la illustrates this process diagramatically.
Variables on the other hand are mapped into memory starting at the lowest position
of RAM memory - hex $8ØØ (2Ø48) unless manually shifted by the"LOMEM:" command.
They are laid down from there (see Figure lb) and continue until all the variables
have been mapped into memory or until they collide with the program statements.
In the event of the latter case a memory full error will be generated

*Top of RAM memory is a function of the amount of memory.
l6384 will be the value of "HIMEM:" for a l6K system.

VN DSP NVA DATA(Ø) DATA(l).... DATA(n) ST

l hl h2 hn+l

 The computer keeps track of the amount of memory used for the variable
table and program statements. By placing the end memory location of each into
$CC-CD(2Ø4-2Ø5) and $CA-CB(2Ø3-2Ø4), respectively. These are the BASIC
memory program pointers and their values can be found by using the statements
in Figure 2. CM defined in Figure 1 as the location of the end of the variable
tape is equal to the number resulting from statement a of Figure 2. PP, the
program pointer, is equal to the value resulting from statement 2b. These
statements(Figure 2) can then be used on any Apple II computer to find the
limits of the program and variable table.

 First, power up the Apple II, reset it, and use the CTRL B (control B)
command to place the system into BASIC initializing the memory pointers. Using
the statements from Figure 2 it is found that for a 16K Apple II CM is equal to
2Ø48 and PP is equal to 16384. These also happen to be the values of OMEN and
HIMEN: But this is expected because upon using the Bc command both memory
pointers are initialized indicating no program statements and no variables.

FINDING THE VARIABLE TABLE FROM BASIC

 To illustrate what a variable table looks like in Apple II memory suppose
we want to assign the numeric variable A ($C1 is the ASCII equivalent of a with
the high order bit set) the value of -1 (FF FF in hex) and then examine the
memory contents. The steps in this process are outlined in example I. Variable A
is defined as equal to -1 (step 1). Then for convenience another variable - B -
is defined as equal to Ø (step 2). Now that the variable table has been defined
use of statement 2a indicates that CM is equal to 2Ø6Ø (step 3). LOMEN has not
been readjusted so it is equal to 2Ø48. Therefore the variable table resides in
memory from 2Ø48 ($8ØØ hex) to 2Ø6Ø ($88C). Depressing the "RESET" key places
the Apple II into the monitor mode (step 4).
 We are now ready to examine the memory contents of the variable table.
Since the variable table resides from $8ØØ hex to $8ØC hex typing in "8ØØ.8ØC"
and then depressing the "RETURN" key (step 5) will list the memory contents of
this range. Figure 3 lists the contents with each memory location labelled.
Examining these contents we see that Cl is equal to the variable name and is the
memory equivalent of "A" and that FF FF is the equivalent of -1. From this, since
the variable name is at the beginning of the table and the data is at the end, the
variable table representation of A extends from $8ØØ to $8O5. We have then found

36

the memory range of where the variable A is mapped into memory.
The reason forthis will become clear in the next section.

READ/SAVE ROUTINE
 The READ/SAVE subroutine has three parts. The first section (lines Ø-1Ø)
defines variable A and transfers control to the main program. Lines 2Ø through
26 represents the Write data to tape routine and lines 3Ø-38 represent the Read
data from tape subroutine. Both READ and SAVE routines are executable by the
BASIC "GOSUB X" (where X is 2Ø for write and 3Ø is for read) command. And as
listed these routines can be directly incorporated into almost any BASIC program
for read and saving a variable table. The limitation of these routines is that
the whole part of a variable table is processed so it is necessary to maintain
exactly the dimension statements for the variables used.

SAVING A DATA TABLE
 The first step in a hard copy routine is to place the desired data onto
tape. This is accomplished by determining the length of the variable table and
setting A equal to it. Next within the main program when it is time to write the
data a GOSUB2Ø statement will execute the write to tape process. Record length,
variable A, is written to tape first (line 22) followed by the desired data
(line 24). When this process is completed control is returned to the main program.

READING A DATA TABLE
The second step is to read the data from tape. When it is time a GOSUB3Ø
statement will initiate the read process. First, the record length is read in
and checked to see if enough memory is available (line 32-34). If exactly the
same dimension statements are used it is almost guaranteed that there will be
enough memory available. After this the variable table is read in (line 34) and
control is then returned to the main program (line 36). If not enough memory
is available then an error is generated and control is returned to the main pro-
gram (line 38)

 The variables used in this subroutine are defined as follows:

 A = record length, must be the first variable defined
 CM= the value obtained from statement a of figure 2
 LM= is equal to the value of "LOMEM:"
 Nominally 2Ø48

37

EXAMPLE OF READ/SAVE USAGE
 The Read/Save routines may be incorporated directly into a main program.
To illustrate this a test program is listed in example 2. This program dimensions
a variable array of twenty by one, fills the array with numbers, writes the data
table to tape, and then reads the data from tape listing the data on the video
display. To get a feeling for how to use these routines enter this program and
explore how the Read/Save routines work.

CONCLUSION
 Reading and Saving data in the format of a variable table is a relatively
straight forward process with the Read/Save subroutine listed in figure 4. This
routine will increase the flexibility of the Apple II by providing a permanent
record of the data generated within a program. This program can be reprocessed.
The Read/Save routines are a valuable addition to any data processing program.

38

LOMEN:
$800

b a

Variable Data BASIC Program

39

L H L H L H
VAR DSP NVA DATA VAR DSP NVA DATA
NAM NAM

800 801 802 803 804 805 806 807 808 809 80A 80B 80C
 Cl 00 06 08 FF FF C2 00 0C 08 00 00 00

 Unused

CM End of
Variable
Table

HIMEM
Max System
Size

 Figure 3
$800.80C rewritten with labelling

 Figure l

a) PRINT PEEK(204) + PEEK(205)*256 → PP

b) PRINT PEEK(202) + PEEK(203)*256 → CM

 Figure 2

Varl Var2 Varn Memory Pl P2 P3 ... Pn-2 Pn-l Pn

PP beginning
 of
 Program

40

 FIGURE 4b

READ/SAVE PROGRAM COMMENTS

0 A=0 This must be the first statement in the
 program. It is initially 0, but if data
 is to be saved, it will equal the length
 of the data base.

l0 GOTO l00 This statement moves command to the main
 program.

20 PRINT "REWIND TAPE THEN Lines 20-26 are the write data to tape
 START TAPE RECORDER": subroutine.
 INPUT "THEN HIT RETURN",
 B$

22 A=CM-LM: POKE 60,4:
 POKE 6l,8: POKE 62,5:
 POKE 63,8: CALL -307

24 POKE 60,LM MOD 256: Writing data table to tape
 POKE 6l, LM/256:
 POKE 62, CM MOD 256:
 POKE 63, CM/256:
 CALL -307

26 PRINT "DATA TABLE SAVED": Returning control to main program.
 RETURN

30 PRINT "REWIND THE TAPE Lines 30-38 are the READ data from tape
 THEN START TAPE RECORDER": subroutine.
 INPUT "AND HIT RETURN",
 B$

32 POKE 60,4: POKE 6l,8:
 POKE 62,5: POKE 63,8:
 CALL -259

34 IF A<0 THEN 38: P=LM+A: Checking the record length (A) for memory
 IF P>HM THEN 38: CM=P: requirements if everything is satisfactory
 POKE 60, LM MOD 256: the data is READ in.
 POKE 6l, LM/256: POKE 62,
 CM MOD 256: POKE 63, CM/256:
 CALL -259

36 PRINT "DATA READ IN":
 RETURN

38 PRINT "***TOO MUCH DATA Returning control to main program.
 BASE***": RETURN

 NOTE: CM, LM and A must be defined within the main program.

41

l

2

3

4

5

Computer responds with:

Ø8ØØ- Cl ØØ 86 Ø8 FF FF C2 ØØ

Ø8Ø8 ØC Ø8 ØØ ØØ ØØ

>A=l
>

>B=Ø
>

>PRINT PEEK (2Ø4) + PEEK
(2Ø5) * 256

computer responds with=
2Ø6Ø

>
*

*8ØØ.8ØC

Define variable A=-l, then hit RETURN

Define variable B=Ø, then hit RETURN

Use statement 2a to find the end of
the VARIABLE TABLE

Hit the RESET key, Apple moves into
Monitor mode.

Type in VARIABLE TABLE RANGE and HIT
the RETURN KEY.

Example l

42

Example 2

>LIST 110 PRINT “20 NUMBERS GENERATED”

 0 A=0

 10 GOTO 100 120 PRINT “NOW WE ARE GOING TO SAVE

 20 REM WRITE DATA TO TAPE ROUTINE THE DATA”: PRINT “WHEN YOU ARE R

 22 A=CM-LM: POKE 60,4: POKE 61 EADY START THE RECORDER IN RECOR

 ,8: POKE 62,5: POKE 63,8: CALL D MORE”: INPUT “AND HIT RETURN”

 -307 ,A$

 24 POKE 60,LM MOD 256: POKE 61 130 CALL -936: PRINT “NOW WRITING DA

 ,LM/256: POKE 62,CM MOD 256 TA TO TAPE”: GOSUB 20

 : POKE 63, CM/256: CALL -307 135 PRINT “NOW THE DATA IS SAVE”

 26 RETURN 140 PRINT “NOW WE ARE GOING TO CLEAR

 30 REM READ DATA SUBROUTINE THE X(20) TABLE AND READ THE DA

 32 POKE 60,4: POKE 61,8: POKE TA FROM TAPE”

 62,5: POKE 63,8: CALL -259 150 FOR I=1 TO 20:X(I): NEXT I

 34 IF A<0 THEN 38:P=LM+A: IF P> “X(”;I;”)= “;X(I): NEXT I

 HM THEN 38: CM=P: POKE 60,LM MOD 160 PRINT “NOW START TAPE RECORDER”

 256: POKE 61,LM/256: POKE 62 : INPUT “AND THEN HIT RETURN”

 ,CM MOD 256: POKE 63,CM/256 ,A$

 : CALL - 259 165 PRINT “A ”,A

 36 RETURN 170 GOSUB 30

 38 PRINT “*** TOO MUCH DATA BASE ** 180 PRINT “ALL THE DATA READ IN”

 *”:END

 100 DIM A$(1),X(20) 190 FOR I-1 TO 20: PRINT “X(”;I;

 105 FOR I=1 TO 20:X(I)=I: NEXT “)=”;X(I): NEXT I

 I 195 PRINT “THIS IS THE END”

 108 LM=2048:CM=2106:A=58:HM=16383 200 END

INTRODUCTION
 Computers can perform marvelous feats of mathematical computation
at well beyond the speed capable of most human minds. They are fast,
cold and accurate; man on the other hand is slower, has emotion, and makes
errors. These differences create problems when the two interact with one
another. So to reduce this problem humanizing of the computer is needed.
Humanizing means incorporating within the computer procedures that aid in
a program's usage. One such technique is the addition of a tone subroutine.
This paper discusses the incorporation and usage of a tone subroutine within
the Apple II computer.

Tone Generation
 To generate tones in a computer three things are needed: a speaker,
a circuit to drive the speaker, and a means of triggering the circuit. As it
happens the Apple II computer was designed with a two-inch speaker and an
efficient speaker driving circuit. Control of the speaker is accomplished
through software.
 Toggling the speaker is a simple process, a mere PEEK - 16336 ($CØ3Ø)
in BASIC statement will perform this operation. This does not, however,
produce tones, it only emits clicks. Generation of tones is the goal, so
describing frequency and duration is needed, This is accomplished by toggling
the speaker at regular intervals for a fixed period of time. Figure l lists
a machine language routine that satisfies these requirements.

Machine Language Program
 This machine language program resides in page Ø of memory from $Ø2 (2)
to $14 (2Ø). $ØØ (ØØ) is used to store the relative period (P) between
toggling of the speaker and $Ø1 (Ø1) is used as the memory location for the
value of relative duration (Ø). Both P and D can range in value from $ØØ (Ø)
to $FF (255). After the values for frequency and duration are placed into
memory a CALL2 statement from BASIC will activate this routine. The speaker
is toggled with the machine language statement residing at $Ø2 and then a

A SIMPLE TONE SUBROUTINE

43

44

delay in time equal to the value in $ØØ occurs. This process is repeated until
the tone has lasted a relative period of time equal to the duration (value in $Øl)
and then this program is exited (statement $l4).

Basic Program

 The purpose of the machine language routine is to generate tones controllable
from BASIC as the program dictates. Figure 2 lists the appropriate statement that
will deposit the machine language routine into memory. They are in the form of
a subroutine and can be activated by a GOSUB 32ØØØ statement. It is only necessary
to use this statement once at the beginning of a program. After that the machine
language program will remain in memory unless a later part of the main program
modifies the first 2Ø locations of page Ø.

 After the GOSUB 32ØØØ has placed the machine language program into memory
it may be activated by the statement in Figure 3. This statement is also in the
form of a GOSUB because it can be used repetitively in a program. Once the frequency
and duration have been defined by setting P and D equal to a value between
Ø and 255 a GOSUB 25 statement is used to initiate the generation of a tone. The
values of P and D are placed into $ØØ and $Øl and the CALL2 command activates the
machine language program that toggles the speaker. After the tone has ended
control is returned to the main program.

 The statements in Figures 2 and 3 can be directly incorporated into BASIC
programs to provide for the generation of tones. Once added to a program an
infinite variety of tone combinations can be produced. For example, tones can
be used to prompt, indicate an error in entering or answering questions, and
supplement video displays on the Apple II computer system.

 Since the computer operates at a faster rate than man does, prompting can
be used to indicate when the computer expects data to be entered. Tones can be
generated at just about any time for any reason in a program. The programmer's
imagination can guide the placement of these tones.

CONCLUSION

 The incorporation of tones through the routines discussed in this paper
will aid in the humanizing of software used in the Apple computer. These routines
can also help in transforming a dull program into a lively one. They are relatively
easy to use and are a valuable addition to any program.

32000 POKE 2,173: POKE 3,48: POKE

 4,192: POKE 5,136: POKE 6,208

 : POKE 7,4: P0KE 8,198: POKE

 9,1: POKE 10,240

32005 POKE 11,8: POKE 12,202: POKE

 13,208: POKE 14,246: POKE 15

 ,166: POKE 16,0: POKE 17,76

 : POKE 18,2: POKE 19,0: POKE

 20,96: RETURN

25 POKE 0,P: POKE 1,D: CALL 2:

 RETURN

FIGURE 2.

GOSUB

0000- FF ???

0001- FF ???

0002- AD 30 C0 LDA $C030

0005- 88 DEY

0006- D0 04 BNE $000C

0008- C6 01 DEC $01

000A- F0 08 BEQ $0014

000C- CA DEX

000D- D0 F6 BNE $0005

000F- A6 00 LDX $00

0011- 4C 02 00 JMP $0002

0014- 60 RTS

45

adapted from a program by P. Lutas.

FIGURE 1 . Machine Language Program

BASIC "POKES"

FIGURE 3.

High-Resolution Operating Subroutines

 These subroutines were created to make programming for

High-Resolution Graphics easier, for both BASIC and machine.

language programs. These subroutines occupy 757 bytes of memory

and are available on either cassette tape or Read-Only Memory

(ROM). This note describes use and care of these subroutines.

 There are seven subroutines in this package. With these,

a programmer can initialize High-Resolution mode, clear the screen,

plot a point, draw a line, or draw and animate a predefined shape.

on the screen. There are also some other general-purpose

subroutines to shorten and simplify programming.

 BASIC programs can access these subroutines by use of ,the

CALL statement, and can pass information by using the POKE state-

ment. There are special entry points for most of the subroutines

that will perform the same functions as the original subroutines

without modifying any BASIC pointers or registers. For machine

language programming, a JSR to the appropriate subroutine address

will perform the same function as a BASIC CALL.

 In the following subroutine descriptions, all addresses

given will be in decimal. The hexadecimal substitutes will

be preceded by a dollar sign ($). All entry points given are

for the cassette tape subroutines, which load into addresses

CØØ to FFF (hex). Equivalent addresses for the ROM subroutines

will be in italic type face.

46

47

High-Resolution Operating Subroutines

INIT Initiates High-Resolution Graphics mode.

 From BASIC: CALL 3072 (or CALL -12288)

 From machine language: JSR $C00 (or JSR $D000)

 This subroutine sets High-Resolution Graphics mode with a

280 x 160 matrix of dots in the top portion of the screen and

four lines of text in the bottom portion of the screen. INIT

also clears the screen.

CLEAR Clears the screen.

 From BASIC: CALL 3886 (or CALL -12274)

 From machine language: JSR SCOE (or JSR $L000E)

 This subroutine clears the High-Resolution screen without

resetting the High-Resblution Graphics mode.

PLOT Plots a point on the screen.

 From BASIC: CALL 3780 (or CALL -21589)

 From machine language: JSR $C7C (or JSR $L107C)

 This subroutine plots a single point on the screen. The

X and Y coodinates of the point are passed in locations 800,

801, and 802 from BASIC, or in the A, X, and Y registers from

machine language. The Y (vertical) coordinate can be from 0

53

54

>REM HIRES DEMO-BASIC LISTING 530 IF RND (500)<C THEN POKE 28 210 X(I)=(X(I)-X)*9/10+X:Y(I)=(

 , RND (4)*85:Y=Y+YDIR*8: IF Y(I)-Y)*9/10+Y: NEXT I,J: GOSUB

>LIST Y>0 AND Y<160 THEN 510:YDIR= 3000: GOTO 200

 1 INIT=3072:CLEAR=3086:POSN=3761 -YDIR:Y=-Y: IF Y<0 THEN Y=Y+ 300 CALL INIT:X= RND (24)*10+20

 :PLOT=3780:LINE=3786:SHAPE= 318: GOSUB 3000: GOTO 510 :Y= RND (14)*10+20: POKE 812

 3805:FIND=3667:SINTBL=3840 600 POKE -16302,0: POKE 768,5: POKE , RND (3)*85+85: GOSUB 2000

 5 DIM X(10),Y(10) 769,0: POKE 800,140: POKE 801 ; CALL PLOT

 10 TEXT : CALL -936: VTAB 4: TAB ,0: POKE 802,0: POKE 804,0: 310 IF RND (1000)<1 THEN 300: IF

 10: PRINT "*** 16 APPLE II ***" POKE 805:3: POKE 812,255: CALL NOT RND (200) THEN POKE 28,

 : PRINT " *** HIGH RESOLUTION G POSN RND (4)*85

 RAPHICS DEMOS ***": PRINT 610 FOR R=0 TO 4160: POKE 807,R MOD 320 X1=X+(RND (3)-1)*25:Y1=Y+(

 15 PRINT "1 RANDOM LINE DRAW AT BAS 64: POKE 806,2+6* NOT (R MOD RND (3)-1)*15: IF X1<0 OR

 IC SPEED":PRINT "2 RANDOM SHAPE 65): CALL SHAPE: NEXT R: GOSUB X1>279 OR Y1<0 OR Y1>159 THEN

 PROJECTED INTO CORNER" 3000: GOTO 610 320

 20 PRINT "3 CHRIS" MAD FOLLY": 700 J= RND (10)+ RND (10):K= RND 330 X=X1:Y=Y1: GOSUB 2000: CALL

 PRINT "4 RANDOM SHAPE SPIRALING (33)+ RND (31)+ RND (60):L= LINE: GOSUB 3000: GOTO 310

 INTO POINT": PRINT "5 SPIROGRAP RND (9)/8: PRINT “FREQ#1 ” 400 GOSUB 1000: POKE 812, RND(

 H" ;J;“ FREQ#2= “;K 3)*85+85: CALL PLOT

 25 PRINT "6 HI-RES DONUT": PRINT 710 GOSUB 4000: GOSUB 3000: GOTO 410 FOR J=1 TO 25: FOR I=1 TO R:

 "7 RANDOM WAVE FORM": PRINT 700 POKE 800,X(I) MOD 255: POKE

 "8 SUM OF TWO SINE WAVES" 800 INPUT ”REL FREQ #1=”,J: INPUT 801,X>255: POKE 802,Y(I): CALL

 30 PRINT : PRINT "HIT ANY KEY FOR N “REL FREQ #2=”,K: INPUT “MODE (0 LINE

 EW DEMO": PRINT "TYPE "CONTROL C =SOLID, 1=POINTS)”,L 420 X=(X(I)-80+(Y(I)-80)/8)*9/10

 " ; RETURN BUTTON THEN TYPE "T 810 GOSUB 4000: GOSUB 3000: GOTO +80:Y(I)=(Y(I)-88-(X(I)-80)

 EXT AND RETURN BUTTON TO STOP" 800 /8)*9/10+80:X(I)=X: NEXT I,

 1000 CALL CLEAR: POKE 812, RND(J: GOSUB 3000: GOTO 400

 50 PRINT : INPUT "WHICH DEMO # DO Y 3)*85+85:R= RND (3)+2+ RND 500 CALL INIT: POKE 800,0: CALL

 OU WANT ",X1 (2): FOR I=1 TO R:X(I)= RND PLOT:X=0:Y=0:XDIR=1:YDIR=1:

 90 IF X1<1 OR X1>8 THEN 10: CALL (160):Y(I)= RND (160): NEXT A=5:B=3:C=8

 INIT: GOTO 100*X1 I 510 POKE 800,0: POKE 801,0: POKE

 100 CALL INIT:X=4-:Y=X: GOSUB 2000 1010 X=X(1):Y=Y(1): GOSUB 2000: RETURN 802,Y: CALL LINE: POKE 800,

 : POKE 812,255: CALL PLOT 2000 POKE 800,X MOD 256: POKE 801 (279-X) MOD 256: POKE 801,X<

 110 X= RND (200):Y=RND (160): GOSUB ,X)255: POKE 802,Y: RETURN 24: POKE 802,159: CALL LINE:

 2000: CALL LINE: IF NOT RND POKE 800,23: POKE 801,1: POKE

 (300) THEN POKE 23,(PEEK (3000 IF PEEK (-16384)<128 THEN RETURN 802,159-Y: CALL LINE

 28)+ RND (3)+1) MOD 4*85: GOSUB : POKE -16386,0: POP : GOTO 515 IF RND (500) THEN 520:A=1+ RND

 3000: GOTO 110 10 (13):B=2+ RND (8):C=4+ RND

 200 GOSUB 1000:X= RND (2)=279:Y= 4000 CALL INIT: POKE 812,255:A=0 (7)

 RND (2)*159: CALL PLOT: FOR :B=0: FOR 1=0 TO 279:A=(A+J) 520 POKE 800,X MOD 256: POKE 801

 J=1 TO 30: FOR I=1 TO R: POKE MOD 256:B=(B+K) MOD 256:Y= ,X>255: POKE 802,0: CALL LINE:

 800,X(I) MOD 256: POKE 801, (PEEK (SINTBL+A)+ PEEK (SINTBL+ X=X+XDIR*A: IF X>0 AND X<288

 X(I)>255: POKE 802,Y(I): CALL B))*5/16 THEN 530:XDIR=-XDIR:X=-X: OF

 LINE 4010 POKE 800,I MOD 256: POKE 801 X<0 THEN X=X+558

 ,I>255: POKE 802,Y: CALL LINE

 6*(NOT I OR L): NEXT I: RETURN

55

 ROD'S COLOR PATTERN

PROGRAM DESCRIPTION
ROD'S COLOR PATTERN is a simple but eloquent program. It generates a
continuous flow of colored mosaic-like patterns in a 40 high by 40 wide
block matrix. Many of the patterns generated by this program are pleasing
to the eye and will dazzle the mind for minutes at a time.

REQUIREMENTS
4K or greater Apple II system with a color video display.
BASIC is the programming language used.

PROGRAM LISTING

100 GR

105 FOR W=3 TO 50

110 FOR I=1 TO 19

115 FOR J=0 TO 19

120 K=I+J

130 COLOR=J*3/(I+3)+I*W/12

135 PLOT I,K: PLOT K,I: PLOT 40

 -I,40-K

136 PLOT 40-K,40-I: PLOT K,40-I:

 PLOT 40-I,K: PLOT I,40-K: PLOT

 40-K,I

140 NEXT J,I

145 NEXT W: GOTO 105

/ /

56

 5 REM PONG BY WENDELL BITTER 120 IF Y=PP+3 THEN Y=-1: IF Y=PP+ 235 IF H THEN 245:P(1)=((PDL (

 10 REM 7/7/77 4 THEN V=-2: IF Y=PP+5 THEN 1)-24)*20)/115: IF (1)=P(3

 15 REM PADDLE SWITCHES CONTROL V=-3) THEN 245: IF P(1)<0 THEN

 PADDLE SIZE AFTER A MISS 125 IF S=0 THEN V=3- RND (7) P(1)=0: IF P(1)+S>39 THEN P(

 OR DURING A HIT 130 COLOR=0: PLOT X-C,Y 1)=39-S

 20 GR 135 IF (H AND C>0) OR (VY0= ABS 240 COLOR=6: VLIN P(1),P(1)+S AT

 25 DIM P(3): DIM HP$(10) (Y) AND X=0) THEN V=4- RND 39: COLOR=0: IF P(1)>P(3) THEN

 30 =38:B=1:C=-1 (9) VLIN 0,P(1)-1 AT 39: IF P(1

 35 COLOR=13: HLIN 1,38 AT 0: HLIN 140 IF X=0 THEN VY0= ABS (V))<P(3) THEN VLIN P(1)

 1,38 AT 39 145 A=39-A:B=30-B:C=-C AT 39:P(3)=P(1)

 40 CALL -936: VTAB 23: INPUT “HANDB 150 IF PEEK (-16286)>127 AND S# 245 P(0)=((PDL (0)-24)*20)/115

 ALL OR PONG ? ”, HP$ 5 THEN S=S+1 : IF P(0)<0 THEN P(0)=0: IF

 45 INPUT “PADDLE SIZE (1-6) ”, 155 IF PEEK (-16287)>127 AND S# P(0)=P(2) THEN RETURN : IF

 PS: IF PS<1 OR PS>6 THEN 45 0 THEN S=S-1 P(0)+S>39 THEN P(0)=39-S

 :S=PS-1 160 GOTO 65 250 COLOR=6: VLIN P(0),P(0)+S AT

 50 CALL -936 165 COLOR=0: PLOT X-C,Y 0: COLOR=0: IF P(0)>P(2) THEN

 55 IF HP$(1)#”H” THEN 205 170 COLOR=15: PLOT X,Y+V*(Y+V)- VLIN 0,P(0)-1 AT 0: IF P(0)

 60 H=1: COLOR=13: VLIN 0,39 AT 1 AND Y+V(40) <P(2) THEN VLIN P(0)+S+1,39

 39: GOTO 205 175 FOR T=1 TO 75:M= PEEK (-16336 AT 0

 65 FOR X=A TO B STEP C)+ PEEK (-16336)- PEEK (-16336 255 COLOR=0: IF P(0)>P(2) THEN

 70 Y=YY+Y: IF Y>1 AND Y<38 THEN): NEXT T VLIN 0,P(0)-1 AT 0: IF P(0)

 80 IF Y<1 THEN Y=1: IF Y>38 180 IF X=0 THEN SR=SR+1: IF X=39 <P(2) THEN VLIN P(0)+S+1,39

 THEN Y=38 THEN SL=SL+1 AT 0:P(2)=P(0): RETURN

 75 V=-V: FOR T=1 TO 5:M= PEEK 185 VTAB 23: TAB 7: PRINT SL;: TAB 260 PRINT “”: END

 (-15336): NEXT T 33: PRINT SR 265 END

 80 IF X=C OR X=39+C THEN 85: COLOR= 190 COLOR=0: PLOT X-C, Y

 0: PLOT X-C,YY: COLOR=15: PLOT 195 IF SL=15 OR SR=15 THEN 260

 X,Y 200 COLOR=0: PLOT X,Y+V*(Y+V)-1

 85 YY=Y: IF X MOD 2=0 THEN GOSUB AND Y+VY(40)

 235: NEXT X 205 FOR T=1 RO 75: IF T MOD 5*0

 90 GOSUB 235 THEN 210: IF PEEK (-16286)

 95 IF SCRN(X,Y+V*(Y+V(40 AND Y+ >127 AND S#5 THEN S=S+1: IF

 Y)-1))=0 THEN 165 PEEK (-16287)>127 AND S#0 THEN

100 FOR T=1 TO 10:M= PEEK (-16336 S=S-1

): NEXT T 210 GOSUB 235: NEXT T

105 IF H AND C>0 THEN 130 215 YY=P(0): IF X=0 THEN YY=P(1

110 PP=P(X/38))

115 IF Y=PP THEN V=3: IF Y=PP+1 220 IF H THEN YY= RND (37)+1

 THEN V=2: IF Y=PP+2 THEN V= 225 V=1- RND (3)

 1 230 GOTO 65

PROGRAM LISTING: PONG

57

COLOR SKETCH

PROGRAM DESCRIPTION

Color Sketch is a little program that transforms the Apple II into an

artist's easel, the screen into a sketch pad. The user as an artist

has a 4Ø high by 4Ø wide (16ØØ blocks) sketching pad to fill with a

rainbow of fifteen colors. Placement of colors is determined by

controlling paddle inputs; one for the horizontal and the other for

the vertical. Colors are selected by depressing a letter from A through

P on the keyboard.

An enormous number of distinct pictures can be drawn on the sketch pad

and this program will provide many hours of visual entertainment.

REQUIREMENTS

This program will fit into a 4K system in the BASIC mode.

58

 5 POKE 2,173: POKE 3,48: POKE 85 POKE 1,TOM MOD 256: POKE 24 135 C2=SCRN(X,Y): C3=15: IF C2=

 4,192: POKE 5,165: POKE 6,8 ,TON/256+1: POKE 0,KK: CALL 15 THEN C3=5: COLOR=C3: PLOT

 : POKE 7,32: POKE 8,168: POKE 2: RETURN X,Y: X1=X:Y1=Y

 9,252: POKE 10,165: POKE 11 90 GOSUB 30: GOSUB 25: PRINT : 140 GOTO 125

 ,1: POKE 12,208: POKE 13,4 TAB 10: GOSUB 35: GOSUB 25 145 IF PEEK (-16384)*160 THEN 155

10 POKE 14,198: POKE 15,23: POKE : PRINT : GOSUB 30: GOSUB 25 :FLAG=0: POKE -16368,0: POKE

 16,248: POKE 17,5: POKE 18, : PRINT : TAB 5: GOSUB 40: GOSUB 34,28: COLOR=0: HLIN 0,39 AT

 188: POKE 19,2: POKE 28,76: 25: PRINT : GOSUB 30: GOSUB 39: CALL -936

 POKE 21,2: POKE 22,0: POKE 25 150 PRINT :B$=”CONTINUE OR STOP”

 23,96 95 PRINT: GOSUB 70: GOSUB 45: : VTAB 24: GOSUB 25: INPUT

15 DIM B$(40): TEXT: CALL -936 GOSUB 25: PRINT : GOSUB 50 “ (C/5) ”,B$: IF B$(1,1)=”C”

 : GOTO 90 : GOSUB 25: PRINT : GOSUB 55 THEN 110: PRINT “END” :END

20 CALL -936: GOTO 98 : GOSUB 25: PRINT

25 A=LEN(B$): FOR Z-1 TO A: GOSUB 100 PRINT : PRINT : GOSUB 70: INPUT 155 FLAG=1: C=PEEK (-16384)-193

 65: PRINT B$(Z,Z);: NEXT Z: “WHEN READY HIT RETURN”,B$: POKE -16368,0: GOTO 125

 GOSUB 70: RETURN 105 GR

30 B$=”*************************** 110 B$=”ABCDEFGHIJKLMNOP”: CALL

 ************”:RETURN -936

35 B$=”COLOR SKETCH”: RETURN 115 FOR Z=8 TO 15: COLOR=Z: PLOT

40 B$=COPYRIGHT APPLE COMPUTER 197 2*2+4,39: YTAB 21: GOSUB 75

 7”: RETURN : TAB Z*2+5: PRINT 2$(Z+I),Z+

45 B$=”THIS PROGRAM ALLLOWS YOU TO “ 2);: GOSUB 75: NEXT 2: TAB

 : RETURN 1

50 B$=”SKETCH COLORED FIGURES IN” 120 YTAB 22-B$=”TYPE A LETTER TO CH

 : RETURN ANGE COLOR,”: GOSUB 25: PRINT

55 B$=”LOW RESOLUTION GRAPHICS WITH :B$=”TYPE SPACE BAR TO STOP PLOT

 PADDLES”: RETURN .”: GOSUB 25: PRINT

60 KK=20:TON=28: GOSUB 85: RETURN 125 Y=PDL (1)*38/255:X= PDL (8

)*39/255: YTAB 24: TAB1: PRINT

65 KK=10: TON=10: GOSUB 85: RETURN “CURSOR POSITION: X=”;X;” Y=”

 ;Y;” “;:

70 KK=30:TON=50: GOSUB 85:KK=30 130 IF PEEK (-16384))127 THRN 145

 :TON=98: GOSUB 85: RETURN : IF X1=X AND Y1=Y THEN 126

75 KK=20: TON=20: GOSUB 85: RETURN : COLOR=C2: PLOY X1,Y1: IF

 NOT FLAG THEN 135: COLOR=C:

80 KK=0:TON=250: GOSUB 85:KK=9 PLOT X,Y

 :TON=250: GOSUB 85: RETURN

PROGRAM LISTING: COLOR SKETCH

59

MASTERMIND PROGRAM

PROGRAM DESCRIPTION

MASTERMIND is a game of strategy that matches your wits against Apple's.
The object of the game is to choose correctly which 5 colored bars have
been secretly chosen by the computer. Eight different colors are possible
for each bar - Red (R), Yellow (Y), Violet (V), Orange (0), White (W), and
Black (B). A color may be used more than once. Guesses for a turn are
made by selecting a color for each of the five hidden bars. After hitting
the RETURN key Apple will indicate the correctness of the turn. Each white
square to the right of your turn indicates a correctly colored and positioned
bar. Each grey square acknowledges a correctly colored but improperly posi-
tioned bar. No squares indicate you're way off.

Test your skill and challenge the Apple II to a game of MASTERMIND.

REQUIREMENTS
8K or greater Apple II computer system.
BASIC is the programming language.

60

PROGRAM LISTING: MASTERMIND

 0 REM GAME OF MASTERMIND 8-25-77 200 Y=TRY*2 MOD 36+1:TRY=TRY+1: 3000 REM CALL -384 SETS INVERSE VID

 WOZ (APPLE COMPUTER) TAB 32: PRINT TRY;: COLOR= 3010 REM CALL -380 SETS NORMAL VID

 10 DIM A(6),C(8),D(5),X(8),X$(0: HLIN 0,39 AT Y:FLASH=1: FOR 3020 REM PEEK(-16384) IS KBD (ASCII)

 8):X(1)=2:X(2)=12:X(3)=1:X(N=1 TO 5:A(N)=8: GOSUB 1000 (IF > 127 THEN STROBE SET)

 4)=13:X(5)=3:X(6)=9:X(7)=15 : NEXT N:N=1 3030 REM POKE-16386 CLRS KBD STROBE

 :X(8)=5:X$=”BRGYVOWX” 300 FOR WAIT=1 TO 10:KEY= PEEK 3040 REM CALL-936 CLEARS SCREEN AND

 20 TEXT : CALL -936: PRINT “ (-16384): IF KEY<132 THEN 310 TABS CURSOR TO UPPER LEFT.

 : POKE -16386,0:FLASH=1: FOR 3050 REM IN 310, KEY/5-28= -1 OR +1

 I=1 TO 8: IF KEY<> ASC(X$(I) (ARROW KEY=136 OR 149 ASCII)

 WELCO) THEN NEXT I: IF I=9 THEN 4000 REM STMTS 10-50 INTRO

 ME TO THE GAME OF MASTERMIND! 310:A(N)=I:KEY=149 4010 REM STMTS 100-110 NEW SETUP

 310 GOSUB 1000: IF KEY=141 THEN 4020 REM STMT 200 NEW GUESS

 YOUR OBJECT US TO GUESS 5 COLOR 400: IF KEY=136 AND N>1 OR 4030 REM STMTS 300-310 USER INPUT

 S (WHICH” KEY=149 AND N<6 THEN N=N+KEY/ 4040 REM STMT 400 GUESS EVAL

 30 PRINT “I WILL MAKE UP) IN THE MI 5-28: NEXT WAIT:FLASH=1-FLASH: 4050 REM STMTS 500-5100 WIN

 NIMUM NUMBER OF GUESSES. THER GOTO 300 4060 REM SUBR 1000 COLOR LINE

 E ARE EIGHT DIFFERENT COLORS TO 400 COLOR=15:N=0: FOR I=1 TO 5: 4070 REM SUBR 2000 MATCH TEST

 CHOSE FROM.” D(I)=C(I):J=I: GOSUB 2000: NEXT

 40 PRINT “ I: IF N=5 THEN 500: COLOR=5

 : FOR J=1 TO 5: FOR I=1 TO

FEWER THAN 7 GUESSES--EXC 5: GOSUB 2000: NEXT I,J: GOTO

 ELLENT”: PRINT “ 7 TO 9 GUESSE 200

 S-----GOOD”: PRINT “ 10 TO 14 G 500 PRINT : PRINT “

 UESSES----AVERAGE” YOU GOT IN ”

 50 PRINT “MORE THAN 14 GUESSES--POO ;TRY;“ TRIES (”;: IF TRY<7 THEN

 R PRINT “EXCELLENT”;: IF TRY>

 6 AND TRY <10 THEN PRINT “GOOD”

 ;

”: CALL -384: TAB 7: PRINT 510 IF TRY>9 AND TRY<15 THEN PRINT

 “HIT ANY KEY TO BEGIN PLAY” “AVERAGE”;: IF TRY>14 THEN

 PRINT “POOR”;: PRINT “)”: CALL

100 CALL -380: IF PEEK (-16385) -384: TAB 5: PRINT “HIT THE KEY

 (132 THEN 100: POKE -16368, TO PLAY AGAIN”: GOTO 100

 0: GR : PRINT : FOR I=1 TO 1000 IF N=6 THEN RETURN : COLOR=

 8:C(I)= RND (8)+1: COLOR=X(X(A(N))*FLASH: HLIN N*4-2,N*

 I): HLIN I*4-2,I*4 AT 39: PRINT 4 AT Y: RETURN

 “ ”;X$(I,I);: NEXT I 2000 IF A(I)<>D(J) THEN RETURN ;

110 TRY=0: PRINT : PRINT “ LETTER M=M+1: PLOT 21+M+M,Y: PRINT

 KEYS FOR COLOR CHANGE”: PRINT “”;:A(I)=0:D(J)=9: RETURN

 “ ARROW KEYS FOR ADVANCE AND BA

 CK”: PRINT “ HIT RETURN TO ACC

 EPT GUESS #”;

PROGRAM DESCRIPTION
This program plots three Biorhythm functions: Physical (P), Emotional (E),
and Mental (M) or intellectual. All three functions are plotted in the
color graphics display mode.

Biorhythm theory states that aspects of the mind run in cycles. A brief
description of the three cycles follows:

Physical
The Physical Biorhythm takes 23 days to complete and is an indirect indicator
of the physical state of the individual. It covers physical well-being, basic
bodily functions, strength, coordination, and resistance to disease.

Emotional
The Emotional Biorhythm takes 28 days to complete. It indirectly indicates
the level of sensitivity, mental health, mood, and creativity.

Mental
The mental cycle takes 33 days to complete and indirectly indicates the level
of alertness, logic and analytic functions of the individual, and mental recep-
tivity.

Biorhythms
Biorhythms are thought to affect behavior. When they cross a "baseline" the
functions change phase - become unstable - and this causes Critical Days. These
days are, according to the theory, our weakest and most vulnerable times. Acci-
dents, catching colds, and bodily harm may occur on physically critical days.
Depression, quarrels, and frustration are most likely on emotionally critical
days. Finally, slowness of the mind, resistance to new situations and unclear
thinking are likely on mentally critical days.

REQUIREMENTS
This program fits into a 4K or greater system.
BASIC is the programming language used.

61

PROGRAM LISTING: BIORHYTHM

 5 POKE 2,173: POKE 3,48: POKE 70 POKE 1,TM MOD 256: POKE 24, 110 J=1: GR : POKE 34,23: FOR X=

 4,192: POKE 5,165: POKE 6,8 TM/256+1: POKE 0,KK: CALL 2 18 TO 20: COLOR=3: HLIN 0,31

 : POKE 7,32: POKE 8,168: POKE : RETURN AT X: NEXT X: HLIN 1,3 AT

 9,252: POKE 10,165: POKE 11 75 GOSUB 60: INPUT “DATE (M,D,Y,) ” 3: HLIN 1,3 AT 37: VLIN 2,4

 ,1: POKE 12,208: POKE 13,4 ,M,D,Y:Y=Y+(Y<100)*1900 AT 2: VTAB 21

10 POKE 14,198, POKE 15,24: POKE 80 A=Y-(M<3):N=Y MOD 58*365-Y/ 115 FOR Y=1 TO 31 STEP 3: PRINT

 16,240: POKE 17,5: POKE 18, 58*82+A/4-A/400+M*31-M/12-M/ Y;: IF Y<10 THEN PRINT “ ”;

 198: POKE 19,1: POKE 20,76: 7-M/5-3*(M>2)+D: IF N<0 THEN : PRINT “ ”;: NEXT Y: PRINT

 POKE 21,2: POKE 22,8: POKE N=N+21252: RETURN “ P E M”: VTAB 24

 23,96 85 DIM N$(10),B$(3),B(3),C(3), 120 VTAB 23: PRINT “DAYS LIVED ”

15 GOTO 85 BY(3):B(1)=348:B(2)=286:B(3 ;N: FOR I=1 TO 3: COLOR=1*(

20 TT=3: GOSUB 30: RETURN)=242:C(1)=575:C(2)=700:C(3 I=1)+6*(I=2)+8*(I=3): VLIN

25 PRINT”***********************)=825:BY(1)=23:BV(2)=28 0,39 AT 33+I+I: VTAB 24

*****************”: RETURN 90 BV(3)=33: TEXT : CALL -936: 125 FOR X=0 TO 31:P=(N MOD BV(I)

30 KK=8: TON=500: GOSUB 45: RETURN POKE 34,20: GOSUB 20: GOSUB +X) MOD BY(I): GOSUB 50: PLOT

 25: GOSUB 20: PRINT : TAB 10 X,A: GOSUB 65: NEXT X: NEXT

35 KK=8: TON=250: GOSUB 45: RETURN : PRINT “APPLE II BIORHYTHM (4K) I

 ”: TAB 15: PRINT 130 PRINT : INPUT “ANOTHER PLOT (Y/N)

40 KK=8: TON=250: GOSUB 45: KK=0 95 GOSUB 25: TAB 5: PRINT “COPYRIGH) ”,B$: IF B$(1,1)=”Y” THEN

 :TON=250: GOSUB 45: RETURN T 1977 APPLE COMPUTER INC.” 90: END

 :POKE 34,24: VTAB 24

45 POKE 1,TON MOD 256: POKE 23 100 GOSUB 60: INPUT “NAME ”,N$: >

 ,TON/256+1: POKE 0,KK: CALL VTAB 22: PRINT N$: VTAB 24

 2: RETURN : PRINT “BIRTH ”;: GOSUB 75

50 A=(19-(P*B(I)/100))*(P*100(: VTAB 22: TAB 21: PRINT “BIRTH

 C(I))+(P*100>C(I))*(P*100<= DATE ”;M;”,”;D;”,”;Y: VTAB

 3*C(I))*((P*100-C(I))/100*B(24:N1=N: CALL -868

 I)/100) 105 PRINT “FORECASE ”;: GOSUB 75

55 A=A+(P*100>3*C(I))*(38-((P* :N=N-N1: IF N(0 THEN N=N+21252

 100-3*C(I))/100*B(I)/100)): : VTAB 23: TAB 18: PRINT “FORECA

 A=39*(A>39)+A*(A<40): RETURN ST DATE ”;M;”,”;D;”,”;Y: VTAB

 24: CALL -868

60 KK=8:TN=500: GOSUB 70:KK=9:

 TM=250: GOSUB 70: RETURN

65 KK=7:TM=10: GOSUB 70: RETURN

62

63

DRAGON MAZE PROGRAM

PROGRAM DESCRIPTION
DRAGON MAZE is a game that will test your skill and memory. A mazeis
constructed on the video screen. You watch carefully as it is completed.
After it is finished the maze is hidden as if the lights were turned out.
The object of the game is to get out of the maze before the dragon eats
you. A reddish-brown square indicates your position and a purple square
represents the dragon's.* You move by hitting a letter on the keyboard;
U for up, D for down, R for right, and L for left. As you advance so
does the dragon. The scent of humans drives the dragon crazy; when he is
enraged he breaks through walls to get at you. DRAGON MAZE is not a game
for the weak at heart. Try it if you dare to attempt out-smarting the
dragon.

REQUIREMENTS
8K or greater Apple II computer system.
BASIC is the programming language.

* Color tints may vary depending upon video monitor or television adjustments.

 1 TEXT : CALL -936 20 PRINT “IS, EVEN BEFORE YOU CAN S 1090 Q=R+D+L+U

 2 PRINT “WELCOME TO THE DRAGON'S M EE IT, BY” 1100 IF (Q<3 AND RND (10)<2) OR

 AZE!” 21 PRINT “THE FACE THAT THE DRAGON Q=0 THEN 1178

 3 PRINT “YOU MAY WATCH WHILE I BUI CAN’T GET” 1110 DR= RND (4)

 LD A MAZE,” 22 PRINT “THROUGH IT!)” 1120 GOTO 1130+10*DR

 4 PRINT “BUT WHEN IT'S COMPLETE, I 23 PRINT 1130 IF NOT R THEN 1110:M(K)=M(K)

 ‘LL ERASE” 89 DIM A$(3) +1:X=X+1

 5 PRINT “THE PICTURE. THEN YOU’LL 90 PRINT “TYPE 'GO' TO BEGIN” 1135 VLIN 3*Y-2,3*Y-1 AT 3*(X-1)

 ONLY SEE THE WALLS AS YOU BUMP I ;: INPUT A$

 NTO THEM.” 100 GR : COLOR=15 1136 GOTO 1035

 6 PRINT “TO MOVE, YOU HIT 'R' FOR 105 CALL -936: PRINT “DRAGON MAZE” 1140 IF NOT D THEN 1110:M(K)=M(K)

 RIGHT,” ;: TAB (25): PRINT “GARY J. SHAN +10:Y=Y+1

 7 PRINT “'L' FOR LEFT, 'U' FOR UP, NON” 1145 HLIN 3*X-2,3*X-1 AT 3*(Y-1)

 AND” 110 FOR I=0 TO 39 STEP 3: YLIN

 8 PRINT “'D' FOR DOWN. DO NOT HIT 0,39 AT I: HLIN 0,39 AT I: NEXT 1146 GOTO 1035

 RETURN!” I 1150 IF NOT L THEN 1110:M(K-1)=M(

 9 PRINT 120 COLOR=0 K-1)-1:X=X-1

10 PRINT “THE OBJECT IS FOR YOU (TH 130 S=1000 1155 YLIN 3*Y-2,3*Y-1 AT 3*X

 E GREEN DOT” 1000 DIM M(169),T(I)=0: NEXT 1156 GOTO 1035

11 PRINT “TO GET TO THE DOOR ON THE 1001 FOR I=1 TO 169:T(I)=0: NEXT 1160 IF NOT U THEN 1110:M(K-13)=

 RIGHT SIDE” I M(K-13)-10:Y=Y-1

12 PRINT “BEFORE THE DRAGON (THE RE 1010 FOR I=1 TO 169:M(I)=11: NEXT 1165 HLIN 3*X-2,3*X-1 AT 3*Y: GOTO

 D DOT) EATS” I 1035

13 PRINT “YOU.” 1030 X= RND (13)+1:Y= RND (13)+1 1170 X= RND (13)+1:Y= RND (13)+1

14 PRINT “BEWARE!!!!!!!!! SOMETIMES :C=169

 THE DRAGON” 1035 IF C=1 THEN 120 1180 IF M(X+13*(Y-1))>0 THEN 1170

15 PRINT “GETS REAL MAD, AND CLIMBS 1040 R=0:D=0:L=0:U=0:K=X+13*(Y-1

 OVER A WALL.”):M(K)= ABS (M(K)):C=C-1 1190 C=C+1: GOTO 1035

16 PRINT “BUT MOST OF THE TIME, HE 1050 IF X=13 THEN 1060:R=M(K+1)> 1200 GOSUB 5000: PRINT “THE MAZE IS R

 CAN’T GO OVER” 0 EADY”

17 PRINT “AND HAS TO GO AROUND.” 1060 IF Y=13 THEN 1070:D=M(K+13) 1205 GR : COLOR=15

 >0 1210 VLIN 0,39 AT 0: VLIN 0,39 AT

18 PRINT 1070 IF X=1 THEN 1030:L=M<K-1))0 39: HLIN 0,39 AT 0: HLIN 0,

19 PRINT “(HINT, YOU CAN OFTEN TELL 39 AT 39

 WHERE A WALL” 1080 IF Y=1 THEN 1090:U=M(K-13)> 1220 X=1:Y= RND (13)+1: COLOR=8:

 0 PLOT 3*X-2,3*Y-2

64

PROGRAM LISTING: DRAGON MAZE

1225 HX=3*X-2:HY=3*Y-2 2520 GOTO 2020 7000 IF X>SX THEN 7005: IF Y>SY THEN

1230 WY= RND (13)+1 3000 DX=0:DY=-1 7050

1240 COLOR=0: VLIN 3*WY-2,3*WY-1 3010 IF M(X+13*(Y-2))/10 THEN 4200 7001 IF X<SX THEN 7100: IF Y<SY THEN

 AT 39 7150

1250 SX=13:SY=WY 3020 GOTO 2020 7005 IF SX=13 THEN 7050: IF Y(SX+

1260 QX=3*SX-2:QY=3*SY-2 3500 DX=0:DY=1 13*(SY-1))>9 THEN 7010: IF

1270 RD=1 3510 IF M(X+13(Y-1))/10 THEN 4300 M(SX+13(SY-1)) MOD 10 THRN

1500 K= PEEK (-16384): IF K<128 THEN 7050

 1500 3520 GOTO 2020 7010 DX=1:DY=0

1510 POKE -16368,0 4000 GOSUB 5000 7020 COLOR=0

1515 QQ=K: GOSUB 7000:K=QQ 4010 COLOR=15 7022 RX=3*SX-2:RY=3*SY-2

1516 IF SX=X AND SY=Y THEN 8000 4020 VLIN 3*(Y-1),3*Y AT 3*X 7023 FOR I=1 TO 3:RX=RX+DX:RY=RY+

1520 IF K= ASC(”R”) THEN 2000 4030 GOTO 1500 DY

1530 IF K= ASC(”L”) THEN 2500 4100 GOSUB 5000 7024 COLOR=0

1540 IF K= ASC(”U”) THEN 3000 4110 COLOR=15 7025 FOR K=0 TO 1: FOR L=0 TO 1:

1550 IF K= ASC(”D”) THEN 3500 4120 VLIN 3*(Y-1),3*Y AT 3*(X-1) PLOT QX+K,QY+L: NEXT L,K: COLOR=

1560 GOSUB 5000: GOTO 1500 RD: FOR K=0 TO 1: FOR L=0 TO

2000 DX=1:DY=0 4130 GOTO 1500 1: PLOT RX+K,RY+L: NEXT L,K:

2010 IF M(X+13*(Y-1)) MOD 10 THEN 4200 GOSUB 5000 QX=RX:QY=RY

 4000 4210 COLOR=15 7030 NEXT I

2020 FX=3*X-2:FY=3*Y-2: FOR I=1 TO 4220 HLIN 3*(X-1),3*X AT 3*(Y-1) 7035 SX=SX+DX:SY=SY+DY

 3 7040 T(SX+13 THEN 7100: IF T(SX+

2030 FX=FX+DX:FY=FY+DY 4230 GOTO 1500 13*(SY-1))>9 THEN 7060: IF

2040 COLOR=0 4300 GOSUB 5000 M(SX+13*(SY-1))/10 THEN 7100

2060 FOR K=0 TO 1: FOR L=0 TO 1: 4310 COLOR=15

 PLOT HX+K,HY+L: NEXT L,K: COLOR= 4320 VLIN 3*(X-1),3*X AT 3*Y 7060 DX=0:DY=1: GOTO 7020

 8: FOR K=0 TO 1: FOR L=0 TO 4330 GOTO 1500 7100 IF SX=1 THEN 7150: IF T(SX+

 1: PLOT FX+K,FY+L: NEXT L,K: 5000 S=S-1: FOR I=1 TO 20:A= PEEK 13*(SY-1))>9 THEN 7110: IF

 HX=FX:HY=FY (-16336)+ PEEK (-16336)+ PEEK M(SX+13*(SY-1)-1) MOD 10 THEN

2110 NEXT I (-16336)+ PEEK (-16336): NEXT 7150

2115 X=X+DX:Y=Y+DY I: RETURN

2116 IF X=13 AND Y=WY THEN 6000 6000 PRINT “YOU WIN!”

2120 GOTO 1500 6010 GOSUB 5000: GOSUB 5000: GOSUB

2500 DX=-1:DY=0 5000

2510 IF M(X+13*(Y-1)-1 MOD 10 THEN 6020 PRINT “SCORE=”;S+3

 4100 6030 END

65

DRAGON MAZE cont.

DRAGON MAZE cont.

7110 DX=-1:DY=0: GOTO 7020

7150 IF SY=1 THEN 7005: IF T(SX+

 13*(SY-1))>9 THEN 7160: IF

 M(SX+13*(SY-1)-13)/10 THEN

 7005

7160 DX=0:DY=-1: GOTO 7020

8000 GOSUB 5000: GOSUB 5000: GOSUB

 5000: GOSUB 5000: PRINT “THE DRA

 GON GOT YOU!”

8999 END

>

66

67

APPLE II FIRMWARE

System Mon i to r Commands

Contro l and Edi t ing Characters

Specia l Contro ls and Features

Annotated Moni tor and Dis-assembler L is t ing

Binary F loat ing Po in t Package

Sweet 16 Interpreter L ist ing

6502 Op Codes

1.

2.

3.

4.

5.

6.

7.

System Monitor Commands

Apple II contains a powerful machine level monitor for use by the advanced
programmer. To enter the monitor either press RESET button on keyboard or
CALL-l5l (Hex FF65) from Basic. Apple II will respond with an "*" (asterisk)
prompt character on the TV display. This action will not kill current BASIC
program which may be re-entered by a Cc (control C). NOTE: "adrs" is a
four digit hexidecimal number and "data" is a two digit hexidecimal number.
Remember to press "return" button at the end of each line.

Command Format Example Description

Examine Memory

adrs *CØF2 Examines (displays) single memory
 location of (adrs)

adrsl.adrs2 *lØ24.lØ48 Examines (displays) range of memory
 from (adrsl) thru (adrs2)

(return) *(return) Examines (displays) next 8 memory
 locations.

.adrs2 *.4Ø96 Examines (displays) memory from current
 location through location (adrs2)

Change Memory

adrs:data *A256:EF 2Ø 43 Deposits data into memory starting at
 data data location (adrs).

:data data *:FØ A2 l2 Deposits data into memory starting
 data after (adrs) last used for deposits.

Move Memory

adrsl<adrs2. *1ØØ<BØlØ.B4lØM Copy the data now in the memory range
 adrs3M from (adrs2) to (adrs3) into memory
 locations starting at (adrsl).

Verify Memory

adsr1<adrs2 *1ØØ<BØlØ.B4lØV Verify that block of data in memory
 adrs3V range from (adrs2) to (adrs3) exactly
 matches data block starting at memory
 location (adrsl)and displays
 differences if any.

68

Command Format Example Description

Cassette I/O

adrsl.adrs2R *3ØØ.4FFR Reads cassette data into specified
 memory (adrs) range. Record length
 must be same as memory range or an
 error will occur.

adrsl.adrs2W *8ØØ.9FFW Writes onto cassette data from speci-
 fied memory (adrs) range.

Display

 I *I Set inverse video mode. (Black characters
 on white background)

 M *N Set normal video mode. (White characters
 on black background)

Dis-assembler

adrsL *C8ØØL Decodes 2Ø instructions starting at
 memory (adrs) into 65Ø2 assembly
 nmenonic code.

 L *L Decodes next 2Ø instructions starting
 at current memory address.

Mini-assembler

(Turn-on) *F666G Turns-on mini-assembler. Prompt
 character is now a "!" (exclamation
 point).

$(monitor !$C8ØØL Executes any monitor command from mini-
 command) assembler then returns control to mini-
 assembler. Note that many monitor
 commands change current memory address
 reference so that it is good practice
 to retype desired address reference
 upon return to mini-assembler.

adrs:(65Ø2 !CØlØ:STA 23FF Assembles a mnemonic 65Ø2 instruction
 MNEMONIC into machine codes. If error, machine
 instruction) will refuse instruction, sound bell,
 and reprint line with up arrow under
 error.

69

Command Format Example Description

(space) (65Ø2 ! STA ØlFF Assembles instruction into next
 mnemonic available memory location. (Note
 instruction) space between "f" and instruction)

(TURN-OFF) ! (Reset Button) Exits mini-assembler and returns
 to system monitor.

Monitor Program Execution and Debuging

adrsG *3ØØG Runs machine level program starting
 at memory (adrs).

adrsT *8ØØT Traces a program starting at memory
 location (adrs) and continues trace
 until hitting a breakpoint. Break
 occurs on instruction ØØ (BRK), and
 returns control to system monitor.
 Opens 65Ø2 status registers (see note l)

asrdS *CØ5ØS Single steps through program beginning
 at memory location (adrs). Type a
 letter S for each additional step
 that you want displayed. Opens 65Ø2
 status registers (see Note l).

(Control E) *EC Displays 65Ø2 status registers and
 opens them for modification (see Note l)

(Control Y) *YC Executes user specified machine
 language subroutine starting at
 memory location (3F8).

Note l:

65Ø2 status registers are open if they are last line displayed on screen.
To change them type ":" then "data" for each register.

Example: A = 3C X = FF Y = ØØ P = 32 S = F2
 *: FF Changes A register only
 *:FF ØØ 33 Changes A, X, and Y registers

To change S register, you must first retype data for A, X, Y and P.

Hexidecimal Arithmetic

datal+data2 *78+34 Performs hexidecimal sum of datal
 plus data2.

datal-data2 *AE-34 Performs hexidecimal difference of
 datal minus data2.

70

Command Format Example Description

Set Input/Output Ports

(X) (Control P) *5PC Sets printer output to I/O slot
 number (X). (see Note 2 below)
(X) (Control K) *2KC Sets keyboard input to I/O slot
 number (X). (see Note 2 below)

Note 2:

Only slots 1 through 7 are addressable in this mode. Address Ø (Ex: ØPC
or ØKC) resets ports to internal video display and keyboard. These commands
will not work unless Apple II interfaces are plugged into specificed I/O
slot.

Multiple Commands

 *lØØL 4ØØG AFFT Multiple monitor commands may be
 given on same line if separated by
 a "space".

 *LLLL Single letter commands may be
 repeated without spaces.

71

72

SPECIAL CONTROL AND EDITING CHARACTERS

"Control" characters are indicated by a super-scripted "C" such as Gc. They
are obtained by holding down the CTRL key while typing the specified letter.
Control characters are NOT displayed on the TV screen. Bc and Cc must be
followed by a carriage return. Screen editing characters are indicated by a
sub-scripted "E" such as DE. They are obtained by pressing and releasing the
ESC key then typing specified letter. Edit characters send information only
to display screen and does not send data to memory. For example, Uc moves to
cursor to right and copies text while AE moves cursor to right but does not
copy text.

CHARACTER DESCRIPTION OF ACTION

RESET key

Control B

Control C

Control G

Control H

Control J

Control V

Control X

Immediately interrupts any program execution and resets
computer. Also sets all text mode with scrolling window
at maximum. Control is transferred to System Monitor and
Apple prompts with a "*" (asterisk) and a bell. Hitting
RESET key does NOT destroy existing BASIC or machine
language program.

If in System Monitor (as indicated by a "*"), a control
B and a carriage return will transfer control to BASIC,
scratching (killing) any existing BASIC program and set
HIMEM: to maximum installed user memory and LOMEM:
to 2048.

If in BASIC, halts program and displays line number
where stop occurred*. Program may be continued with a
CON command. If in System Monitor, (as indicated by "*"),
control C and a carriage return will enter BASIC without
killing current program.

Sounds bell (beeps speaker)

Backspaces cursor and deletes any overwritten characters
from computer but not from screen. Apply supplied
keyboards have special key "4-." on right side of keyboard
that provides this functions without using control button.

Issues line feed only

Compliment to HC. Forward spaces cursor and copies over
written characters. Apple keyboards have "+" key on
right side which also performs this function.

Immediately deletes current line.

If BASIC program is expecting keyboard input, you will have
to hit carriage return key after typing control C.

*

SPECIAL CONTROL AND EDITING CHARACTERS

(continued)

73

CHARACTER DESCRIPTION OF ACTION

AE Move cursor to right

BE Move cursor to left

CE Move cursor down

DE Move cursor up

EE Clear text from cursor to end of line

FE Clear text from cursor to end of page

@E Home cursor to top of page, clear text to end
 of page.

Special Controls and Features

Hex BASIC Example Description

Display Mode Controls

CO5Ø 1Ø POKE -163Ø4,Ø Set color graphics mode
CO51 2Ø POKE -163Ø3,Ø Set text mode
CO52 3Ø POKE -163Ø2,Ø Clear mixed graphics
CO53 4Ø POKE -163Ø1,Ø Set mixed graphics (4 lines text)
CO54 5Ø POKE -163ØØ,Ø Clear display Page 2 (BASIC commands
 use Page 1 only)
CO55 6Ø POKE -16299,Ø Set display to Page 2 (alternate)
CO56 7Ø POKE -16298,Ø Clear HIRES graphics mode
CO57 8Ø POKE -16297,Ø Set HIRES graphics mode

TEXT Mode Controls

ØØ2Ø 9Ø POKE 32,Ll Set left side of scrolling window
 to location specified by Ll in
 range of Ø to 39.

ØØ21 1ØØ POKE 33,W1 Set window width to amount specified
 by Wl. Ll+Wl<4Ø. Wl>Ø

ØØ22 11Ø POKE 34,T1 Set window top to line specified
 by Tl in range of Ø to 23

ØØ23 12Ø POKE 35,B1 Set window bottom to line specified
 by Bl in the range of Ø to 23. B1>T1

ØØ24 13Ø CH=PEEK(36) Read/set cusor horizontal position
 14Ø POKE 36,CH in the range of Ø to 39. If using
 15Ø TAB(CH+1) TAB, you must add "1" to cusor position
 read value; Ex. l4Ø and l5Ø perform
 identical function.

ØØ25 16Ø CV=PEEK(37) Similar to above. Read/set cusor
 17Ø POKE 37,CV vertical position in the range Ø to
 18Ø VTAB(CV+l) 23.

ØØ32 19Ø POKE 5Ø,127 Set inverse flag if 127 (Ex. l9Ø)
 2ØØ POKE 5Ø,255 Set normal flag if 255(Ex. 2ØØ)

FC58 21Ø CALL -936 (@E) Home cusor, clear screen

FC42 22Ø CALL -958 (FE) Clear from cusor to end of page

74

 Hex BASIC Example Description

 FC9C 23Ø CALL -868 (EE) Clear from cusor to end of line

 FC66 24Ø CALL -922 (JC) Line feed

 FC7Ø 25Ø CALL -9l2 Scroll up text one line

Miscellaneous

CØ3Ø 36Ø X=PEEK(-l6336) Toggle speaker
 365 POKE -l6336,Ø

CØØØ 37Ø X=PEEK(-16384 Read keyboard; if X>127 then key was
 pressed.

CØlØ 38Ø POKE -l6368,Ø Clear keyboard strobe - always after
 reading keyboard.

CØ6l 39Ø X=PEEK(16287) Read PDL(Ø) push button switch. If
 X>l27 then switch is "on".

CØ62 4ØØ X=PEEK(-l6286) Read PDL(l) push button switch.

CØ63 4lØ X=PEEK(-l6285 Read PDL(2) push button switch.

CØ58 42Ø POKE -l6296,Ø Clear Game I/O ANØ output

CØ59 43Ø POKE -l6295,Ø Set Game I/O ANØ output

CØ5A 44Ø POKE -l6294,Ø Clear Game I/O ANl output

CØ5B 45Ø POKE -l6293,Ø Set Game I/O ANl output

CØ5C 46Ø POKE -l6292,Ø Clear Game I/O AN2 output

CØ5D 47Ø POKE -l629l,Ø Set Game I/O AN2 output

CØ5E 48Ø POKE -l629Ø,Ø Clear Game I/O AN3 output

CØ5F 49Ø POKE -l6289,Ø Set Game I/O AN3 output

75

* *
* APPLE II *
* SYSTEM MONITOR *
* *
* COPYRIGHT 1977 BY *
* APPLE COMPUTER, INC. *
* *
* ALL RIGHTS RESERVED *
* *
* S. WOZNIAK *
* A. BAUM *
* *

 TITLE "APPLE II SYSTEM MONITOR"
LOC0 EPZ $00
LOC1 EPZ $01
WNDLFT EPZ $20
WNDWDTH EPZ $21
WNDTOP EPZ $22
WNDBTM EPZ $23
CH EPZ $24
CV EPZ $25
GBASL EPZ $26
GBASH EPZ $27
BASL EPZ $28
BASH EPZ $29
BAS2L EPZ $2A
BAS2H EPZ $2B
H2 EPZ $2C
LMNEM EPZ $2C
RTNL EPZ $2C
V2 EPZ $2D
RMNEM EPZ $2D
RTNH EPZ $2D
MASK EPZ $2E
CHKSUM EPZ $2E
FORMAT EPZ $2E
LASTIN EPZ $2F
LENGTH EPZ $2F
SIGN EPZ $2F
COLOR EPZ $30
MODE EPZ $31
INVFLG EPZ $32
PROMPT EPZ $33
YSAV EPZ $34
YSAV1 EPZ $35
CSWL EPZ $36
CSWH EPZ $37
KSWL EPZ $38
KSWH EPZ $39
PCL EPZ $3A
PCH EPZ $3B
XQT EPZ $3C
A1L EPZ $3C
A1H EPZ $3D
A2L EPZ $3E
A2H EPZ $3F
A3L EPZ $40
A3H EPZ $41
A4L EPZ $42
A4H EPZ $43
A5L EPZ $44
A5H EPZ $45

76

 ACC EQU $45
 XREG EQU $46
 YREG EQU $47
 STATUS EQU $48
 SPNT EQU $49
 RNDL EQU $4E
 RNDH EQU $4F
 ACL EQU $50
 ACH EQU $51
 XTNDL EQU $52
 XTNDH EQU $53
 AUXL EQU $54
 AUXH EQU $55
 PICK EQU $95
 IN EQU $0200
 USRADR EQU $03F8
 NMI EQU $03FB
 IRQLOC EQU $03FE
 IOADR EQU $C000
 KBD EQU $C000
 KBDSTRB EQU $C010
 TAPEOUT EQU $C020
 SPKR EQU $C030
 TXTCLR EQU $C050
 TXTSET EQU $C051
 MIXCLR EQU $C052
 MIXSET EQU $C053
 LOWSCR EQU $C054
 HISCR EQU $C055
 LORES EQU $C056
 HIRES EQU $C057
 TAPEIN EQU $C060
 PADDL0 EQU $C064
 PTRIG EQU $C070
 BASIC EQU $E000
 BASIC2 EQU $E003
 ORG $F800 ROM START ADDRESS
F800: 4A PLOT LSR A Y-COORD/2
F801: 08 PHP SAVE LSB IN CARRY
F802: 20 47 F8 JSR GBASCALC CALC BASE ADR IN GBASL,H
F805: 28 PLP RESTORE LSB FROM CARRY
F806: A9 0F LDA #$0F MASK $0F IF EVEN
F808: 90 02 BCC RTMASK
F80A: 69 E0 ADC #$E0 MASK $F0 IF ODD
F80C: 85 2E RTMASK STA MASK
F80E: B1 26 PLOT1 LDA (GBASL),Y DATA
F810: 45 30 EOR COLOR EOR COLOR
F812: 25 2E AND MASK AND MASK
F814: 51 26 EOR (GBASL),Y XOR DATA
F816: 91 26 STA (GBASL),Y TO DATA
F818: 60 RTS
F819: 20 00 F8 HLINE JSR PLOT PLOT SQUARE
F81C: C4 2C HLINE1 CPY H2 DONE?
F81E: B0 11 BCS RTS1 YES, RETURN
F820: C8 INY NO, INCR INDEX (X-COORD)
F821: 20 0E F8 JSR PLOT1 PLOT NEXT SQUARE
F824: 90 F6 BCC HLINE1 ALWAYS TAKEN
F826: 69 01 VLINEZ ADC #$01 NEXT Y-COORD
F828: 48 VLINE PHA SAVE ON STACK
F829: 20 00 F8 JSR PLOT PLOT SQUARE
F82C: 68 PLA
F82D: C5 2D CMP V2 DONE?
F82F: 90 F5 BCC VLINEZ NO, LOOP.
F831: 60 RTS1 RTS
F832: A0 2F CLRSCR LDY #$2F MAX Y, FULL SCRN CLR
F834: D0 02 BNE CLRSC2 ALWAYS TAKEN
F836: A0 27 CLRTOP LDY #$27 MAX Y, TOP SCREEN CLR
F838: 84 2D CLRSC2 STY V2 STORE AS BOTTOM COORD
 * FOR VLINE CALLS
F83A: A0 27 LDY #$27 RIGHTMOST X-COORD (COLUMN)
F83C: A9 00 CLRSC3 LDA #$00 TOP COORD FOR VLINE CALLS
F83E: 85 30 STA COLOR CLEAR COLOR (BLACK)
F840: 20 28 F8 JSR VLINE DRAW VLINE
F843: 88 DEY NEXT LEFTMOST X-COORD
F844: 10 F6 BPL CLRSC3 LOOP UNTIL DONE.
F846: 60 RTS
F847: 48 GBASCALC PHA FOR INPUT 000DEFGH
F848: 4A LSR A
F849: 29 03 AND #$03
F84B: 09 04 ORA #$04 GENERATE GBASH=000001FG
F84D: 85 27 STA GBASH
F84F: 68 PLA AND GBASL=HDEDE000
F850: 29 18 AND #$18
F852: 90 02 BCC GBCALC
F854: 69 7F ADC #$7F
F856: 85 26 GBCALC STA GBASL

77

F858: 0A ASL A
F859: 0A ASL A
F85A: 05 26 ORA GBASL
F85C: 85 26 STA GBASL
F85E: 60 RTS
F85F: A5 30 NXTCOL LDA COLOR INCREMENT COLOR BY 3
F861: 18 CLC
F862: 69 03 ADC #$03
F864: 29 0F SETCOL AND #$0F SETS COLOR=17*A MOD 16
F866: 85 30 STA COLOR
F868: 0A ASL A BOTH HALF BYTES OF COLOR EQUAL
F869: 0A ASL A
F86A: 0A ASL A
F86B: 0A ASL A
F86C: 05 30 ORA COLOR
F86E: 85 30 STA COLOR
F870: 60 RTS
F871: 4A SCRN LSR A READ SCREEN Y-COORD/2
F872: 08 PHP SAVE LSB (CARRY)
F873: 20 47 F8 JSR GBASCALC CALC BASE ADDRESS
F876: B1 26 LDA (GBASL),Y GET BYTE
F878: 28 PLP RESTORE LSB FROM CARRY
F879: 90 04 SCRN2 BCC RTMSKZ IF EVEN, USE LO H
F87B: 4A LSR A
F87C: 4A LSR A
F87D: 4A LSR A SHIFT HIGH HALF BYTE DOWN
F87E: 4A LSR A
F87F: 29 0F RTMSKZ AND #$0F MASK 4BITS
F881: 60 RTS
F882: A6 3A INSDS1 LDX PCL PRINT PCL,H
F884: A4 3B LDY PCH
F886: 20 96 FD JSR PRYX2
F889: 20 48 F9 JSR PRBLNK FOLLOWED BY A BLANK
F88C: A1 3A LDA (PCL,X) GET OP CODE
F88E: A8 INSDS2 TAY
F88F: 4A LSR A EVEN/ODD TEST
F890: 90 09 BCC IEVEN
F892: 6A ROR BIT 1 TEST
F893: B0 10 BCS ERR XXXXXX11 INVALID OP
F895: C9 A2 CMP #$A2
F897: F0 0C BEQ ERR OPCODE $89 INVALID
F899: 29 87 AND #$87 MASK BITS
F89B: 4A IEVEN LSR A LSB INTO CARRY FOR L/R TEST
F89C: AA TAX
F89D: BD 62 F9 LDA FMT1,X GET FORMAT INDEX BYTE
F8A0: 20 79 F8 JSR SCRN2 R/L HBYTE ON CARRY
F8A3: D0 04 BNE GETFMT
F8A5: A0 80 ERR LDY #$80 SUBSTITUTE $80 FOR INVALID OPS
F8A7: A9 00 LDA #$00 SET PRINT FORMAT INDEX TO 0
F8A9: AA GETFMT TAX
F8AA: BD A6 F9 LDA FMT2,X INDEX INTO PRINT FORMAT TABLE
F8AD: 85 2E STA FORMAT SAVE FOR ADR FIELD FORMATTING
F8AF: 29 03 AND #$03 MASK FOR 2BIT LENGTH
 * (P=1 BYTE, 1=2 BYTE, 2=3 BYTE)
F8B1: 85 2F STA LENGTH
F8B3: 98 TYA OPCODE
F8B4: 29 8F AND #$8F MASK FOR 1XXX1010 TEST
F8B6: AA TAX SAVE IT
F8B7: 98 TYA OPCODE TO A AGAIN
F8B8: A0 03 LDY #$03
F8BA: E0 8A CPX #$8A
F8BC: F0 0B BEQ MNNDX3
F8BE: 4A MNNDX1 LSR A
F8BF: 90 08 BCC MNNDX3 FORM INDEX INTO MNEMONIC TABLE
F8C1: 4A LSR A
F8C2: 4A MNNDX2 LSR A 1) 1XXX1010=>00101XXX
F8C3: 09 20 ORA #$20 2) XXXYYY01=>00111XXX
F8C5: 88 DEY 3) XXXYYY10=>00110XXX
F8C6: D0 FA BNE MNNDX2 4) XXXYY100=>00100XXX
F8C8: C8 INY 5) XXXXX000=>000XXXXX
F8C9: 88 MNNDX3 DEY
F8CA: D0 F2 BNE MNNDX1
F8CC: 60 RTS
F8CD: FF FF FF DFB $FF,$FF,$FF
F8D0: 20 82 F8 INSTDSP JSR INSDS1 GEN FMT, LEN BYTES
F8D3: 48 PHA SAVE MNEMONIC TABLE INDEX
F8D4: B1 3A PRNTOP LDA (PCL),Y
F8D6: 20 DA FD JSR PRBYTE
F8D9: A2 01 LDX #$01 PRINT 2 BLANKS
F8DB: 20 4A F9 PRNTBL JSR PRBL2
F8DE: C4 2F CPY LENGTH PRINT INST (13 BYTES)
F8E0: C8 INY IN A 12 CHR FIELD
F8E1: 90 F1 BCC PRNTOP
F8E3: A2 03 LDX #$03 CHAR COUNT FOR MNEMONIC PRINT
F8E5: C0 04 CPY #$04

78

F8E7: 90 F2 BCC PRNTBL
F8E9: 68 PLA RECOVER MNEMONIC INDEX
F8EA: A8 TAY
F8EB: B9 C0 F9 LDA MNEML,Y
F8EE: 85 2C STA LMNEM FETCH 3-CHAR MNEMONIC
F8F0: B9 00 FA LDA MNEMR,Y (PACKED IN 2-BYTES)
F8F3: 85 2D STA RMNEM
F8F5: A9 00 PRMN1 LDA #$00
F8F7: A0 05 LDY #$05
F8F9: 06 2D PRMN2 ASL RMNEM SHIFT 5 BITS OF
F8FB: 26 2C ROL LMNEM CHARACTER INTO A
F8FD: 2A ROL (CLEARS CARRY)
F8FE: 88 DEY
F8FF: D0 F8 BNE PRMN2
F901: 69 BF ADC #$BF ADD "?" OFFSET
F903: 20 ED FD JSR COUT OUTPUT A CHAR OF MNEM
F906: CA DEX
F907: D0 EC BNE PRMN1
F909: 20 48 F9 JSR PRBLNK OUTPUT 3 BLANKS
F90C: A4 2F LDY LENGTH
F90E: A2 06 LDX #$06 CNT FOR 6 FORMAT BITS
F910: E0 03 PRADR1 CPX #$03
F912: F0 1C BEQ PRADR5 IF X=3 THEN ADDR.
F914: 06 2E PRADR2 ASL FORMAT
F916: 90 0E BCC PRADR3
F918: BD B3 F9 LDA CHAR1-1,X
F91B: 20 ED FD JSR COUT
F91E: BD B9 F9 LDA CHAR2-1,X
F921: F0 03 BEQ PRADR3
F923: 20 ED FD JSR COUT
F926: CA PRADR3 DEX
F927: D0 E7 BNE PRADR1
F929: 60 RTS
F92A: 88 PRADR4 DEY
F92B: 30 E7 BMI PRADR2
F92D: 20 DA FD JSR PRBYTE
F930: A5 2E PRADR5 LDA FORMAT
F932: C9 E8 CMP #$E8 HANDLE REL ADR MODE
F934: B1 3A LDA (PCL),Y SPECIAL (PRINT TARGET,
F936: 90 F2 BCC PRADR4 NOT OFFSET)
F938: 20 56 F9 RELADR JSR PCADJ3
F93B: AA TAX PCL,PCH+OFFSET+1 TO A,Y
F93C: E8 INX
F93D: D0 01 BNE PRNTYX +1 TO Y,X
F93F: C8 INY
F940: 98 PRNTYX TYA
F941: 20 DA FD PRNTAX JSR PRBYTE OUTPUT TARGET ADR
F944: 8A PRNTX TXA OF BRANCH AND RETURN
F945: 4C DA FD JMP PRBYTE
F948: A2 03 PRBLNK LDX #$03 BLANK COUNT
F94A: A9 A0 PRBL2 LDA #$A0 LOAD A SPACE
F94C: 20 ED FD PRBL3 JSR COUT OUTPUT A BLANK
F94F: CA DEX
F950: D0 F8 BNE PRBL2 LOOP UNTIL COUNT=0
F952: 60 RTS
F953: 38 PCADJ SEC 0=1-BYTE,1=2-BYTE
F954: A5 2F PCADJ2 LDA LENGTH 2=3-BYTE
F956: A4 3B PCADJ3 LDY PCH
F958: AA TAX TEST DISPLACEMENT SIGN
F959: 10 01 BPL PCADJ4 (FOR REL BRANCH)
F95B: 88 DEY EXTEND NEG BY DEC PCH
F95C: 65 3A PCADJ4 ADC PCL
F95E: 90 01 BCC RTS2 PCL+LENGTH(OR DISPL)+1 TO A
F960: C8 INY CARRY INTO Y (PCH)
F961: 60 RTS2 RTS
 * FMT1 BYTES: XXXXXXY0 INSTRS
 * IF Y=0 THEN LEFT HALF BYTE
 * IF Y=1 THEN RIGHT HALF BYTE
 * (X=INDEX)
F962: 04 20 54
F965: 30 0D FMT1 DFB $04,$20,$54,$30,$0D
F967: 80 04 90
F96A: 03 22 DFB $80,$04,$90,$03,$22
F96C: 54 33 0D
F96F: 80 04 DFB $54,$33,$0D,$80,$04
F971: 90 04 20
F974: 54 33 DFB $90,$04,$20,$54,$33
F976: 0D 80 04
F979: 90 04 DFB $0D,$80,$04,$90,$04
F97B: 20 54 3B
F97E: 0D 80 DFB $20,$54,$3B,$0D,$80
F980: 04 90 00
F983: 22 44 DFB $04,$90,$00,$22,$44
F985: 33 0D C8
F988: 44 00 DFB $33,$0D,$C8,$44,$00

79

80

F98A: 11 22 44
F98D: 33 0D DFB $11,$22,$44,$33,$0D
F98F: C8 44 A9
F992: 01 22 DFB $C8,$44,$A9,$01,$22
F994: 44 33 0D
F997: 80 04 DFB $44,$33,$0D,$80,$04
F999: 90 01 22
F99C: 44 33 DFB $90,$01,$22,$44,$33
F99E: 0D 80 04
F9A1: 90 DFB $0D,$80,$04,$90
F9A2: 26 31 87
F9A5: 9A DFB $26,$31,$87,$9A $ZZXXXY01 INSTR'S
F9A6: 00 FMT2 DFB $00 ERR
F9A7: 21 DFB $21 IMM
F9A8: 81 DFB $81 Z-PAGE
F9A9: 82 DFB $82 ABS
F9AA: 00 DFB $00 IMPLIED
F9AB: 00 DFB $00 ACCUMULATOR
F9AC: 59 DFB $59 (ZPAG,X)
F9AD: 4D DFB $4D (ZPAG),Y
F9AE: 91 DFB $91 ZPAG,X
F9AF: 92 DFB $92 ABS,X
F9B0: 86 DFB $86 ABS,Y
F9B1: 4A DFB $4A (ABS)
F9B2: 85 DFB $85 ZPAG,Y
F9B3: 9D DFB $9D RELATIVE
F9B4: AC A9 AC
F9B7: A3 A8 A4
 CHAR1 ASC ",),#($"
F9BA: D9 00 D8
F9BD: A4 A4 00 CHAR2 DFB $D9,$00,$D8,$A4,$A4,$00
 *CHAR2: "Y",0,"X$$",0
 * MNEML IS OF FORM:
 * (A) XXXXX000
 * (B) XXXYY100
 * (C) 1XXX1010
 * (D) XXXYYY10
 * (E) XXXYYY01
 * (X=INDEX)
F9C0: 1C 8A 1C
F9C3: 23 5D 8B MNEML DFB $1C,$8A,$1C,$23,$5D,$
F9C6: 1B A1 9D
F9C9: 8A 1D 23 DFB $1B,$A1,$9D,$8A,$1D,$23
F9CC: 9D 8B 1D
F9CF: A1 00 29 DFB $9D,$8B,$1D,$A1,$00,$29
F9D2: 19 AE 69
F9D5: A8 19 23 DFB $19,$AE,$69,$A8,$19,$23
F9D8: 24 53 1B
F9DB: 23 24 53 DFB $24,$53,$1B,$23,$24,$53
F9DE: 19 A1 DFB $19,$A1 (A) FORMAT ABOVE
F9E0: 00 1A 5B
F9E3: 5B A5 69 DFB $00,$1A,$5B,$5B,$A5,$69
F9E6: 24 24 DFB $24,$24 (B) FORMAT
F9E8: AE AE A8
F9EB: AD 29 00 DFB $AE,$AE,$A8,$AD,$29,$00
F9EE: 7C 00 DFB $7C,$00 (C) FORMAT
F9F0: 15 9C 6D
F9F3: 9C A5 69 DFB $15,$9C,$6D,$9C,$A5,$69
F9F6: 29 53 DFB $29,$53 (D) FORMAT
F9F8: 84 13 34
F9FB: 11 A5 69 DFB $84,$13,$34,$11,$A5,$69
F9FE: 23 A0 DFB $23,$A0 (E) FORMAT
FA00: D8 62 5A
FA03: 48 26 62 MNEMR DFB $D8,$62,$5A,$48,$26,$62
FA06: 94 88 54
FA09: 44 C8 54 DFB $94,$88,$54,$44,$C8,$54
FA0C: 68 44 E8
FA0F: 94 00 B4 DFB $68,$44,$E8,$94,$00,$B4
FA12: 08 84 74
FA15: B4 28 6E DFB $08,$84,$74,$B4,$28,$6E
FA18: 74 F4 CC
FA1B: 4A 72 F2 DFB $74,$F4,$CC,$4A,$72,$F2
FA1E: A4 8A DFB $A4,$8A (A) FORMAT
FA20: 00 AA A2
FA23: A2 74 74 DFB $00,$AA,$A2,$A2,$74,$74
FA26: 74 72 DFB $74,$72 (B) FORMAT
FA28: 44 68 B2
FA2B: 32 B2 00 DFB $44,$68,$B2,$32,$B2,$00
FA2E: 22 00 DFB $22,$00 (C) FORMAT
FA30: 1A 1A 26
FA33: 26 72 72 DFB $1A,$1A,$26,$26,$72,$72
FA36: 88 C8 DFB $88,$C8 (D) FORMAT
FA38: C4 CA 26
FA3B: 48 44 44 DFB $C4,$CA,$26,$48,$44,$44
FA3E: A2 C8 DFB $A2,$C8 (E) FORMAT

FA40: FF FF FF DFB $FF,$FF,$FF
FA43: 20 D0 F8 STEP JSR INSTDSP DISASSEMBLE ONE INST
FA46: 68 PLA AT (PCL,H)
FA47: 85 2C STA RTNL ADJUST TO USER
FA49: 68 PLA STACK. SAVE
FA4A: 85 2D STA RTNH RTN ADR.
FA4C: A2 08 LDX #$08
FA4E: BD 10 FB XQINIT LDA INITBL-1,X INIT XEQ AREA
FA51: 95 3C STA XQT,X
FA53: CA DEX
FA54: D0 F8 BNE XQINIT
FA56: A1 3A LDA (PCL,X) USER OPCODE BYTE
FA58: F0 42 BEQ XBRK SPECIAL IF BREAK
FA5A: A4 2F LDY LENGTH LEN FROM DISASSEMBLY
FA5C: C9 20 CMP #$20
FA5E: F0 59 BEQ XJSR HANDLE JSR, RTS, JMP,
FA60: C9 60 CMP #$60 JMP (), RTI SPECIAL
FA62: F0 45 BEQ XRTS
FA64: C9 4C CMP #$4C
FA66: F0 5C BEQ XJMP
FA68: C9 6C CMP #$6C
FA6A: F0 59 BEQ XJMPAT
FA6C: C9 40 CMP #$40
FA6E: F0 35 BEQ XRTI
FA70: 29 1F AND #$1F
FA72: 49 14 EOR #$14
FA74: C9 04 CMP #$04 COPY USER INST TO XEQ AREA
FA76: F0 02 BEQ XQ2 WITH TRAILING NOPS
FA78: B1 3A XQ1 LDA (PCL),Y CHANGE REL BRANCH
FA7A: 99 3C 00 XQ2 STA XQT,Y DISP TO 4 FOR
FA7D: 88 DEY JMP TO BRANCH OR
FA7E: 10 F8 BPL XQ1 NBRANCH FROM XEQ.
FA80: 20 3F FF JSR RESTORE RESTORE USER REG CONTENTS.
FA83: 4C 3C 00 JMP XQT XEQ USER OP FROM RAM
FA86: 85 45 IRQ STA ACC (RETURN TO NBRANCH)
FA88: 68 PLA
FA89: 48 PHA **IRQ HANDLER
FA8A: 0A ASL A
FA8B: 0A ASL A
FA8C: 0A ASL A
FA8D: 30 03 BMI BREAK TEST FOR BREAK
FA8F: 6C FE 03 JMP (IRQLOC) USER ROUTINE VECTOR IN RAM
FA92: 28 BREAK PLP
FA93: 20 4C FF JSR SAV1 SAVE REG'S ON BREAK
FA96: 68 PLA INCLUDING PC
FA97: 85 3A STA PCL
FA99: 68 PLA
FA9A: 85 3B STA PCH
FA9C: 20 82 F8 XBRK JSR INSDS1 PRINT USER PC.
FA9F: 20 DA FA JSR RGDSP1 AND REG'S
FAA2: 4C 65 FF JMP MON GO TO MONITOR
FAA5: 18 XRTI CLC
FAA6: 68 PLA SIMULATE RTI BY EXPECTING
FAA7: 85 48 STA STATUS STATUS FROM STACK, THEN RTS
FAA9: 68 XRTS PLA RTS SIMULATION
FAAA: 85 3A STA PCL EXTRACT PC FROM STACK
FAAC: 68 PLA AND UPDATE PC BY 1 (LEN=0)
FAAD: 85 3B PCINC2 STA PCH
FAAF: A5 2F PCINC3 LDA LENGTH UPDATE PC BY LEN
FAB1: 20 56 F9 JSR PCADJ3
FAB4: 84 3B STY PCH
FAB6: 18 CLC
FAB7: 90 14 BCC NEWPCL
FAB9: 18 XJSR CLC
FABA: 20 54 F9 JSR PCADJ2 UPDATE PC AND PUSH
FABD: AA TAX ONTO STACH FOR
FABE: 98 TYA JSR SIMULATE
FABF: 48 PHA
FAC0: 8A TXA
FAC1: 48 PHA
FAC2: A0 02 LDY #$02
FAC4: 18 XJMP CLC
FAC5: B1 3A XJMPAT LDA (PCL),Y
FAC7: AA TAX LOAD PC FOR JMP,
FAC8: 88 DEY (JMP) SIMULATE.
FAC9: B1 3A LDA (PCL),Y
FACB: 86 3B STX PCH
FACD: 85 3A NEWPCL STA PCL
FACF: B0 F3 BCS XJMP
FAD1: A5 2D RTNJMP LDA RTNH
FAD3: 48 PHA
FAD4: A5 2C LDA RTNL
FAD6: 48 PHA
FAD7: 20 8E FD REGDSP JSR CROUT DISPLAY USER REG
FADA: A9 45 RGDSP1 LDA #ACC CONTENTS WITH
FADC: 85 40 STA A3L LABELS

81

FADE: A9 00 LDA #ACC/256
FAE0: 85 41 STA A3H
FAE2: A2 FB LDX #$FB
FAE4: A9 A0 RDSP1 LDA #$A0
FAE6: 20 ED FD JSR COUT
FAE9: BD 1E FA LDA RTBL-$FB,X
FAEC: 20 ED FD JSR COUT
FAEF: A9 BD LDA #$BD
FAF1: 20 ED FD JSR COUT
FAF4: B5 4A LDA ACC+5,X
FAF6: 20 DA FD JSR PRBYTE
FAF9: E8 INX
FAFA: 30 E8 BMI RDSP1
FAFC: 60 RTS
FAFD: 18 BRANCH CLC BRANCH TAKEN,
FAFE: A0 01 LDY #$01 ADD LEN+2 TO PC
FB00: B1 3A LDA (PCL),Y
FB02: 20 56 F9 JSR PCADJ3
FB05: 85 3A STA PCL
FB07: 98 TYA
FB08: 38 SEC
FB09: B0 A2 BCS PCINC2
FB0B: 20 4A FF NBRNCH JSR SAVE NORMAL RETURN AFTER
FB0E: 38 SEC XEQ USER OF
FB0F: B0 9E BCS PCINC3 GO UPDATE PC
FB11: EA INITBL NOP
FB12: EA NOP DUMMY FILL FOR
FB13: 4C 0B FB JMP NBRNCH XEQ AREA
FB16: 4C FD FA JMP BRANCH
FB19: C1 RTBL DFB $C1
FB1A: D8 DFB $D8
FB1B: D9 DFB $D9
FB1C: D0 DFB $D0
FB1D: D3 DFB $D3
FB1E: AD 70 C0 PREAD LDA PTRIG TRIGGER PADDLES
FB21: A0 00 LDY #$00 INIT COUNT
FB23: EA NOP COMPENSATE FOR 1ST COUNT
FB24: EA NOP
FB25: BD 64 C0 PREAD2 LDA PADDL0,X COUNT Y-REG EVERY
FB28: 10 04 BPL RTS2D 12 USEC
FB2A: C8 INY
FB2B: D0 F8 BNE PREAD2 EXIT AT 255 MAX
FB2D: 88 DEY
FB2E: 60 RTS2D RTS
FB2F: A9 00 INIT LDA #$00 CLR STATUS FOR DEBUG
FB31: 85 48 STA STATUS SOFTWARE
FB33: AD 56 C0 LDA LORES
FB36: AD 54 C0 LDA LOWSCR INIT VIDEO MODE
FB39: AD 51 C0 SETTXT LDA TXTSET SET FOR TEXT MODE
FB3C: A9 00 LDA #$00 FULL SCREEN WINDOW
FB3E: F0 0B BEQ SETWND
FB40: AD 50 C0 SETGR LDA TXTCLR SET FOR GRAPHICS MODE
FB43: AD 53 C0 LDA MIXSET LOWER 4 LINES AS
FB46: 20 36 F8 JSR CLRTOP TEXT WINDOW
FB49: A9 14 LDA #$14
FB4B: 85 22 SETWND STA WNDTOP SET FOR 40 COL WINDOW
FB4D: A9 00 LDA #$00 TOP IN A-REG,
FB4F: 85 20 STA WNDLFT BTTM AT LINE 24
FB51: A9 28 LDA #$28
FB53: 85 21 STA WNDWDTH
FB55: A9 18 LDA #$18
FB57: 85 23 STA WNDBTM VTAB TO ROW 23
FB59: A9 17 LDA #$17
FB5B: 85 25 TABV STA CV VTABS TO ROW IN A-REG
FB5D: 4C 22 FC JMP VTAB
FB60: 20 A4 FB MULPM JSR MD1 ABS VAL OF AC AUX
FB63: A0 10 MUL LDY #$10 INDEX FOR 16 BITS
FB65: A5 50 MUL2 LDA ACL ACX * AUX + XTND
FB67: 4A LSR A TO AC, XTND
FB68: 90 0C BCC MUL4 IF NO CARRY,
FB6A: 18 CLC NO PARTIAL PROD.
FB6B: A2 FE LDX #$FE
FB6D: B5 54 MUL3 LDA XTNDL+2,X ADD MPLCND (AUX)
FB6F: 75 56 ADC AUXL+2,X TO PARTIAL PROD
FB71: 95 54 STA XTNDL+2,X (XTND)
FB73: E8 INX
FB74: D0 F7 BNE MUL3
FB76: A2 03 MUL4 LDX #$03
FB78: 76 MUL5 DFB $76
FB79: 50 DFB $50
FB7A: CA DEX
FB7B: 10 FB BPL MUL5
FB7D: 88 DEY
FB7E: D0 E5 BNE MUL2
FB80: 60 RTS

82

FB81: 20 A4 FB DIVPM JSR MD1 ABS VAL OF AC, AUX.
FB84: A0 10 DIV LDY #$10 INDEX FOR 16 BITS
FB86: 06 50 DIV2 ASL ACL
FB88: 26 51 ROL ACH
FB8A: 26 52 ROL XTNDL XTND/AUX
FB8C: 26 53 ROL XTNDH TO AC.
FB8E: 38 SEC
FB8F: A5 52 LDA XTNDL
FB91: E5 54 SBC AUXL MOD TO XTND.
FB93: AA TAX
FB94: A5 53 LDA XTNDH
FB96: E5 55 SBC AUXH
FB98: 90 06 BCC DIV3
FB9A: 86 52 STX XTNDL
FB9C: 85 53 STA XTNDH
FB9E: E6 50 INC ACL
FBA0: 88 DIV3 DEY
FBA1: D0 E3 BNE DIV2
FBA3: 60 RTS
FBA4: A0 00 MD1 LDY #$00 ABS VAL OF AC, AUX
FBA6: 84 2F STY SIGN WITH RESULT SIGN
FBA8: A2 54 LDX #AUXL IN LSB OF SIGN.
FBAA: 20 AF FB JSR MD3
FBAD: A2 50 LDX #ACL
FBAF: B5 01 MD3 LDA LOC1,X X SPECIFIES AC OR AUX
FBB1: 10 0D BPL MDRTS
FBB3: 38 SEC
FBB4: 98 TYA
FBB5: F5 00 SBC LOC0,X COMPL SPECIFIED REG
FBB7: 95 00 STA LOC0,X IF NEG.
FBB9: 98 TYA
FBBA: F5 01 SBC LOC1,X
FBBC: 95 01 STA LOC1,X
FBBE: E6 2F INC SIGN
FBC0: 60 MDRTS RTS
FBC1: 48 BASCALC PHA CALC BASE ADR IN BASL,H
FBC2: 4A LSR A FOR GIVEN LINE NO
FBC3: 29 03 AND #$03 0<=LINE NO.<=$17
FBC5: 09 04 ORA #$04 ARG=000ABCDE, GENERATE
FBC7: 85 29 STA BASH BASH=000001CD
FBC9: 68 PLA AND
FBCA: 29 18 AND #$18 BASL=EABAB000
FBCC: 90 02 BCC BSCLC2
FBCE: 69 7F ADC #$7F
FBD0: 85 28 BSCLC2 STA BASL
FBD2: 0A ASL
FBD3: 0A ASL
FBD4: 05 28 ORA BASL
FBD6: 85 28 STA BASL
FBD8: 60 RTS
FBD9: C9 87 BELL1 CMP #$87 BELL CHAR? (CNTRL-G)
FBDB: D0 12 BNE RTS2B NO, RETURN
FBDD: A9 40 LDA #$40 DELAY .01 SECONDS
FBDF: 20 A8 FC JSR WAIT
FBE2: A0 C0 LDY #$C0
FBE4: A9 0C BELL2 LDA #$0C TOGGLE SPEAKER AT
FBE6: 20 A8 FC JSR WAIT 1 KHZ FOR .1 SEC.
FBE9: AD 30 C0 LDA SPKR
FBEC: 88 DEY
FBED: D0 F5 BNE BELL2
FBEF: 60 RTS2B RTS
FBF0: A4 24 STOADV LDY CH CURSOR H INDEX TO Y-REG
FBF2: 91 28 STA (BASL),Y STORE CHAR IN LINE
FBF4: E6 24 ADVANCE INC CH INCREMENT CURSOR H INDEX
FBF6: A5 24 LDA CH (MOVE RIGHT)
FBF8: C5 21 CMP WNDWDTH BEYOND WINDOW WIDTH?
FBFA: B0 66 BCS CR YES CR TO NEXT LINE
FBFC: 60 RTS3 RTS NO,RETURN
FBFD: C9 A0 VIDOUT CMP #$A0 CONTROL CHAR?
FBFF: B0 EF BCS STOADV NO,OUTPUT IT.
FC01: A8 TAY INVERSE VIDEO?
FC02: 10 EC BPL STOADV YES, OUTPUT IT.
FC04: C9 8D CMP #$8D CR?
FC06: F0 5A BEQ CR YES.
FC08: C9 8A CMP #$8A LINE FEED?
FC0A: F0 5A BEQ LF IF SO, DO IT.
FC0C: C9 88 CMP #$88 BACK SPACE? (CNTRL-H)
FC0E: D0 C9 BNE BELL1 NO, CHECK FOR BELL.
FC10: C6 24 BS DEC CH DECREMENT CURSOR H INDEX
FC12: 10 E8 BPL RTS3 IF POS, OK. ELSE MOVE UP
FC14: A5 21 LDA WNDWDTH SET CH TO WNDWDTH-1
FC16: 85 24 STA CH
FC18: C6 24 DEC CH (RIGHTMOST SCREEN POS)
FC1A: A5 22 UP LDA WNDTOP CURSOR V INDEX
FC1C: C5 25 CMP CV

83

FC1E: B0 0B BCS RTS4 IF TOP LINE THEN RETURN
FC20: C6 25 DEC CV DEC CURSOR V-INDEX
FC22: A5 25 VTAB LDA CV GET CURSOR V-INDEX
FC24: 20 C1 FB VTABZ JSR BASCALC GENERATE BASE ADR
FC27: 65 20 ADC WNDLFT ADD WINDOW LEFT INDEX
FC29: 85 28 STA BASL TO BASL
FC2B: 60 RTS4 RTS
FC2C: 49 C0 ESC1 EOR #$C0 ESC?
FC2E: F0 28 BEQ HOME IF SO, DO HOME AND CLEAR
FC30: 69 FD ADC #$FD ESC-A OR B CHECK
FC32: 90 C0 BCC ADVANCE A, ADVANCE
FC34: F0 DA BEQ BS B, BACKSPACE
FC36: 69 FD ADC #$FD ESC-C OR D CHECK
FC38: 90 2C BCC LF C, DOWN
FC3A: F0 DE BEQ UP D, GO UP
FC3C: 69 FD ADC #$FD ESC-E OR F CHECK
FC3E: 90 5C BCC CLREOL E, CLEAR TO END OF LINE
FC40: D0 E9 BNE RTS4 NOT F, RETURN
FC42: A4 24 CLREOP LDY CH CURSOR H TO Y INDEX
FC44: A5 25 LDA CV CURSOR V TO A-REGISTER
FC46: 48 CLEOP1 PHA SAVE CURRENT LINE ON STK
FC47: 20 24 FC JSR VTABZ CALC BASE ADDRESS
FC4A: 20 9E FC JSR CLEOLZ CLEAR TO EOL, SET CARRY
FC4D: A0 00 LDY #$00 CLEAR FROM H INDEX=0 FOR REST
FC4F: 68 PLA INCREMENT CURRENT LINE
FC50: 69 00 ADC #$00 (CARRY IS SET)
FC52: C5 23 CMP WNDBTM DONE TO BOTTOM OF WINDOW?
FC54: 90 F0 BCC CLEOP1 NO, KEEP CLEARING LINES
FC56: B0 CA BCS VTAB YES, TAB TO CURRENT LINE
FC58: A5 22 HOME LDA WNDTOP INIT CURSOR V
FC5A: 85 25 STA CV AND H-INDICES
FC5C: A0 00 LDY #$00
FC5E: 84 24 STY CH THEN CLEAR TO END OF PAGE
FC60: F0 E4 BEQ CLEOP1
FC62: A9 00 CR LDA #$00 CURSOR TO LEFT OF INDEX
FC64: 85 24 STA CH (RET CURSOR H=0)
FC66: E6 25 LF INC CV INCR CURSOR V(DOWN 1 LINE)
FC68: A5 25 LDA CV
FC6A: C5 23 CMP WNDBTM OFF SCREEN?
FC6C: 90 B6 BCC VTABZ NO, SET BASE ADDR
FC6E: C6 25 DEC CV DECR CURSOR V(BACK TO BOTTOM LINE)
FC70: A5 22 SCROLL LDA WNDTOP START AT TOP OF SCRL WNDW
FC72: 48 PHA
FC73: 20 24 FC JSR VTABZ GENERATE BASE ADR
FC76: A5 28 SCRL1 LDA BASL COPY BASL,H
FC78: 85 2A STA BAS2L TO BAS2L,H
FC7A: A5 29 LDA BASH
FC7C: 85 2B STA BAS2H
FC7E: A4 21 LDY WNDWDTH INIT Y TO RIGHTMOST INDEX
FC80: 88 DEY OF SCROLLING WINDOW
FC81: 68 PLA
FC82: 69 01 ADC #$01 INCR LINE NUMBER
FC84: C5 23 CMP WNDBTM DONE?
FC86: B0 0D BCS SCRL3 YES, FINISH
FC88: 48 PHA
FC89: 20 24 FC JSR VTABZ FORM BASL,H (BASE ADDR)
FC8C: B1 28 SCRL2 LDA (BASL),Y MOVE A CHR UP ON LINE
FC8E: 91 2A STA (BAS2L),Y
FC90: 88 DEY NEXT CHAR OF LINE
FC91: 10 F9 BPL SCRL2
FC93: 30 E1 BMI SCRL1 NEXT LINE (ALWAYS TAKEN)
FC95: A0 00 SCRL3 LDY #$00 CLEAR BOTTOM LINE
FC97: 20 9E FC JSR CLEOLZ GET BASE ADDR FOR BOTTOM LINE
FC9A: B0 86 BCS VTAB CARRY IS SET
FC9C: A4 24 CLREOL LDY CH CURSOR H INDEX
FC9E: A9 A0 CLEOLZ LDA #$A0
FCA0: 91 28 CLEOL2 STA (BASL),Y STORE BLANKS FROM 'HERE'
FCA2: C8 INY TO END OF LINES (WNDWDTH)
FCA3: C4 21 CPY WNDWDTH
FCA5: 90 F9 BCC CLEOL2
FCA7: 60 RTS
FCA8: 38 WAIT SEC
FCA9: 48 WAIT2 PHA
FCAA: E9 01 WAIT3 SBC #$01
FCAC: D0 FC BNE WAIT3 1.0204 USEC
FCAE: 68 PLA (13+2712*A+512*A*A)
FCAF: E9 01 SBC #$01
FCB1: D0 F6 BNE WAIT2
FCB3: 60 RTS
FCB4: E6 42 NXTA4 INC A4L INCR 2-BYTE A4
FCB6: D0 02 BNE NXTA1 AND A1
FCB8: E6 43 INC A4H
FCBA: A5 3C NXTA1 LDA A1L INCR 2-BYTE A1.
FCBC: C5 3E CMP A2L
FCBE: A5 3D LDA A1H AND COMPARE TO A2

84

FCC0: E5 3F SBC A2H
FCC2: E6 3C INC A1L (CARRY SET IF >=)
FCC4: D0 02 BNE RTS4B
FCC6: E6 3D INC A1H
FCC8: 60 RTS4B RTS
FCC9: A0 4B HEADR LDY #$4B WRITE A*256 'LONG 1'
FCCB: 20 DB FC JSR ZERDLY HALF CYCLES
FCCE: D0 F9 BNE HEADR (650 USEC EACH)
FCD0: 69 FE ADC #$FE
FCD2: B0 F5 BCS HEADR THEN A 'SHORT 0'
FCD4: A0 21 LDY #$21 (400 USEC)
FCD6: 20 DB FC WRBIT JSR ZERDLY WRITE TWO HALF CYCLES
FCD9: C8 INY OF 250 USEC ('0')
FCDA: C8 INY OR 500 USEC ('0')
FCDB: 88 ZERDLY DEY
FCDC: D0 FD BNE ZERDLY
FCDE: 90 05 BCC WRTAPE Y IS COUNT FOR
FCE0: A0 32 LDY #$32 TIMING LOOP
FCE2: 88 ONEDLY DEY
FCE3: D0 FD BNE ONEDLY
FCE5: AC 20 C0 WRTAPE LDY TAPEOUT
FCE8: A0 2C LDY #$2C
FCEA: CA DEX
FCEB: 60 RTS
FCEC: A2 08 RDBYTE LDX #$08 8 BITS TO READ
FCEE: 48 RDBYT2 PHA READ TWO TRANSITIONS
FCEF: 20 FA FC JSR RD2BIT (FIND EDGE)
FCF2: 68 PLA
FCF3: 2A ROL NEXT BIT
FCF4: A0 3A LDY #$3A COUNT FOR SAMPLES
FCF6: CA DEX
FCF7: D0 F5 BNE RDBYT2
FCF9: 60 RTS
FCFA: 20 FD FC RD2BIT JSR RDBIT
FCFD: 88 RDBIT DEY DECR Y UNTIL
FCFE: AD 60 C0 LDA TAPEIN TAPE TRANSITION
FD01: 45 2F EOR LASTIN
FD03: 10 F8 BPL RDBIT
FD05: 45 2F EOR LASTIN
FD07: 85 2F STA LASTIN
FD09: C0 80 CPY #$80 SET CARRY ON Y
FD0B: 60 RTS
FD0C: A4 24 RDKEY LDY CH
FD0E: B1 28 LDA (BASL),Y SET SCREEN TO FLASH
FD10: 48 PHA
FD11: 29 3F AND #$3F
FD13: 09 40 ORA #$40
FD15: 91 28 STA (BASL),Y
FD17: 68 PLA
FD18: 6C 38 00 JMP (KSWL) GO TO USER KEY-IN
FD1B: E6 4E KEYIN INC RNDL
FD1D: D0 02 BNE KEYIN2 INCR RND NUMBER
FD1F: E6 4F INC RNDH
FD21: 2C 00 C0 KEYIN2 BIT KBD KEY DOWN?
FD24: 10 F5 BPL KEYIN LOOP
FD26: 91 28 STA (BASL),Y REPLACE FLASHING SCREEN
FD28: AD 00 C0 LDA KBD GET KEYCODE
FD2B: 2C 10 C0 BIT KBDSTRB CLR KEY STROBE
FD2E: 60 RTS
FD2F: 20 0C FD ESC JSR RDKEY GET KEYCODE
FD32: 20 2C FC JSR ESC1 HANDLE ESC FUNC.
FD35: 20 0C FD RDCHAR JSR RDKEY READ KEY
FD38: C9 9B CMP #$9B ESC?
FD3A: F0 F3 BEQ ESC YES, DON'T RETURN
FD3C: 60 RTS
FD3D: A5 32 NOTCR LDA INVFLG
FD3F: 48 PHA
FD40: A9 FF LDA #$FF
FD42: 85 32 STA INVFLG ECHO USER LINE
FD44: BD 00 02 LDA IN,X NON INVERSE
FD47: 20 ED FD JSR COUT
FD4A: 68 PLA
FD4B: 85 32 STA INVFLG
FD4D: BD 00 02 LDA IN,X
FD50: C9 88 CMP #$88 CHECK FOR EDIT KEYS
FD52: F0 1D BEQ BCKSPC BS, CTRL-X
FD54: C9 98 CMP #$98
FD56: F0 0A BEQ CANCEL
FD58: E0 F8 CPX #$F8 MARGIN?
FD5A: 90 03 BCC NOTCR1
FD5C: 20 3A FF JSR BELL YES, SOUND BELL
FD5F: E8 NOTCR1 INX ADVANCE INPUT INDEX
FD60: D0 13 BNE NXTCHAR
FD62: A9 DC CANCEL LDA #$DC BACKSLASH AFTER CANCELLED LINE
FD64: 20 ED FD JSR COUT

85

86

FD67: 20 8E FD GETLNZ JSR CROUT OUTPUT CR
FD6A: A5 33 GETLN LDA PROMPT
FD6C: 20 ED FD JSR COUT OUTPUT PROMPT CHAR
FD6F: A2 01 LDX #$01 INIT INPUT INDEX
FD71: 8A BCKSPC TXA WILL BACKSPACE TO 0
FD72: F0 F3 BEQ GETLNZ
FD74: CA DEX
FD75: 20 35 FD NXTCHAR JSR RDCHAR
FD78: C9 95 CMP #PICK USE SCREEN CHAR
FD7A: D0 02 BNE CAPTST FOR CTRL-U
FD7C: B1 28 LDA (BASL),Y
FD7E: C9 E0 CAPTST CMP #$E0
FD80: 90 02 BCC ADDINP CONVERT TO CAPS
FD82: 29 DF AND #$DF
FD84: 9D 00 02 ADDINP STA IN,X ADD TO INPUT BUF
FD87: C9 8D CMP #$8D
FD89: D0 B2 BNE NOTCR
FD8B: 20 9C FC JSR CLREOL CLR TO EOL IF CR
FD8E: A9 8D CROUT LDA #$8D
FD90: D0 5B BNE COUT
FD92: A4 3D PRA1 LDY A1H PRINT CR,A1 IN HEX
FD94: A6 3C LDX A1L
FD96: 20 8E FD PRYX2 JSR CROUT
FD99: 20 40 F9 JSR PRNTYX
FD9C: A0 00 LDY #$00
FD9E: A9 AD LDA #$AD PRINT '-'
FDA0: 4C ED FD JMP COUT
FDA3: A5 3C XAM8 LDA A1L
FDA5: 09 07 ORA #$07 SET TO FINISH AT
FDA7: 85 3E STA A2L MOD 8=7
FDA9: A5 3D LDA A1H
FDAB: 85 3F STA A2H
FDAD: A5 3C MODSCHK LDA A1L
FDAF: 29 07 AND #$07
FDB1: D0 03 BNE DATAOUT
FDB3: 20 92 FD XAM JSR PRA1
FDB6: A9 A0 DATAOUT LDA #$A0
FDB8: 20 ED FD JSR COUT OUTPUT BLANK
FDBB: B1 3C LDA (A1L),Y
FDBD: 20 DA FD JSR PRBYTE OUTPUT BYTE IN HEX
FDC0: 20 BA FC JSR NXTA1
FDC3: 90 E8 BCC MODSCHK CHECK IF TIME TO,
FDC5: 60 RTS4C RTS PRINT ADDR
FDC6: 4A XAMPM LSR A DETERMINE IF MON
FDC7: 90 EA BCC XAM MODE IS XAM
FDC9: 4A LSR A ADD, OR SUB
FDCA: 4A LSR A
FDCB: A5 3E LDA A2L
FDCD: 90 02 BCC ADD
FDCF: 49 FF EOR #$FF SUB: FORM 2'S COMPLEMENT
FDD1: 65 3C ADD ADC A1L
FDD3: 48 PHA
FDD4: A9 BD LDA #$BD
FDD6: 20 ED FD JSR COUT PRINT '=', THEN RESULT
FDD9: 68 PLA
FDDA: 48 PRBYTE PHA PRINT BYTE AS 2 HEX
FDDB: 4A LSR A DIGITS, DESTROYS A-REG
FDDC: 4A LSR A
FDDD: 4A LSR A
FDDE: 4A LSR A
FDDF: 20 E5 FD JSR PRHEXZ
FDE2: 68 PLA
FDE3: 29 0F PRHEX AND #$0F PRINT HEX DIG IN A-REG
FDE5: 09 B0 PRHEXZ ORA #$B0 LSB'S
FDE7: C9 BA CMP #$BA
FDE9: 90 02 BCC COUT
FDEB: 69 06 ADC #$06
FDED: 6C 36 00 COUT JMP (CSWL) VECTOR TO USER OUTPUT ROUTINE
FDF0: C9 A0 COUT1 CMP #$A0
FDF2: 90 02 BCC COUTZ DON'T OUTPUT CTRL'S INVERSE
FDF4: 25 32 AND INVFLG MASK WITH INVERSE FLAG
FDF6: 84 35 COUTZ STY YSAV1 SAV Y-REG
FDF8: 48 PHA SAV A-REG
FDF9: 20 FD FB JSR VIDOUT OUTPUT A-REG AS ASCII
FDFC: 68 PLA RESTORE A-REG
FDFD: A4 35 LDY YSAV1 AND Y-REG
FDFF: 60 RTS THEN RETURN
FE00: C6 34 BL1 DEC YSAV
FE02: F0 9F BEQ XAM8
FE04: CA BLANK DEX BLANK TO MON
FE05: D0 16 BNE SETMDZ AFTER BLANK
FE07: C9 BA CMP #$BA DATA STORE MODE?
FE09: D0 BB BNE XAMPM NO, XAM, ADD, OR SUB
FE0B: 85 31 STOR STA MODE KEEP IN STORE MODE
FE0D: A5 3E LDA A2L

87

FE0F: 91 40 STA (A3L),Y STORE AS LOW BYTE AS (A3)
FE11: E6 40 INC A3L
FE13: D0 02 BNE RTS5 INCR A3, RETURN
FE15: E6 41 INC A3H
FE17: 60 RTS5 RTS
FE18: A4 34 SETMODE LDY YSAV SAVE CONVERTED ':', '+',
FE1A: B9 FF 01 LDA IN-1,Y '-', '.' AS MODE.
FE1D: 85 31 SETMDZ STA MODE
FE1F: 60 RTS
FE20: A2 01 LT LDX #$01
FE22: B5 3E LT2 LDA A2L,X COPY A2 (2 BYTES) TO
FE24: 95 42 STA A4L,X A4 AND A5
FE26: 95 44 STA A5L,X
FE28: CA DEX
FE29: 10 F7 BPL LT2
FE2B: 60 RTS
FE2C: B1 3C MOVE LDA (A1L),Y MOVE (A1 TO A2) TO
FE2E: 91 42 STA (A4L),Y (A4)
FE30: 20 B4 FC JSR NXTA4
FE33: 90 F7 BCC MOVE
FE35: 60 RTS
FE36: B1 3C VFY LDA (A1L),Y VERIFY (A1 TO A2) WITH
FE38: D1 42 CMP (A4L),Y (A4)
FE3A: F0 1C BEQ VFYOK
FE3C: 20 92 FD JSR PRA1
FE3F: B1 3C LDA (A1L),Y
FE41: 20 DA FD JSR PRBYTE
FE44: A9 A0 LDA #$A0
FE46: 20 ED FD JSR COUT
FE49: A9 A8 LDA #$A8
FE4B: 20 ED FD JSR COUT
FE4E: B1 42 LDA (A4L),Y
FE50: 20 DA FD JSR PRBYTE
FE53: A9 A9 LDA #$A9
FE55: 20 ED FD JSR COUT
FE58: 20 B4 FC VFYOK JSR NXTA4
FE5B: 90 D9 BCC VFY
FE5D: 60 RTS
FE5E: 20 75 FE LIST JSR A1PC MOVE A1 (2 BYTES) TO
FE61: A9 14 LDA #$14 PC IF SPEC'D AND
FE63: 48 LIST2 PHA DISEMBLE 20 INSTRS
FE64: 20 D0 F8 JSR INSTDSP
FE67: 20 53 F9 JSR PCADJ ADJUST PC EACH INSTR
FE6A: 85 3A STA PCL
FE6C: 84 3B STY PCH
FE6E: 68 PLA
FE6F: 38 SEC
FE70: E9 01 SBC #$01 NEXT OF 20 INSTRS
FE72: D0 EF BNE LIST2
FE74: 60 RTS
FE75: 8A A1PC TXA IF USER SPEC'D ADR
FE76: F0 07 BEQ A1PCRTS COPY FROM A1 TO PC
FE78: B5 3C A1PCLP LDA A1L,X
FE7A: 95 3A STA PCL,X
FE7C: CA DEX
FE7D: 10 F9 BPL A1PCLP
FE7F: 60 A1PCRTS RTS
FE80: A0 3F SETINV LDY #$3F SET FOR INVERSE VID
FE82: D0 02 BNE SETIFLG VIA COUT1
FE84: A0 FF SETNORM LDY #$FF SET FOR NORMAL VID
FE86: 84 32 SETIFLG STY INVFLG
FE88: 60 RTS
FE89: A9 00 SETKBD LDA #$00 SIMULATE PORT #0 INPUT
FE8B: 85 3E INPORT STA A2L SPECIFIED (KEYIN ROUTINE)
FE8D: A2 38 INPRT LDX #KSWL
FE8F: A0 1B LDY #KEYIN
FE91: D0 08 BNE IOPRT
FE93: A9 00 SETVID LDA #$00 SIMULATE PORT #0 OUTPUT
FE95: 85 3E OUTPORT STA A2L SPECIFIED (COUT1 ROUTINE)
FE97: A2 36 OUTPRT LDX #CSWL
FE99: A0 F0 LDY #COUT1
FE9B: A5 3E IOPRT LDA A2L SET RAM IN/OUT VECTORS
FE9D: 29 0F AND #$0F
FE9F: F0 06 BEQ IOPRT1
FEA1: 09 C0 ORA #IOADR/256
FEA3: A0 00 LDY #$00
FEA5: F0 02 BEQ IOPRT2
FEA7: A9 FD IOPRT1 LDA #COUT1/256
FEA9: 94 00 IOPRT2 STY LOC0,X
FEAB: 95 01 STA LOC1,X
FEAD: 60 RTS
FEAE: EA NOP
FEAF: EA NOP
FEB0: 4C 00 E0 XBASIC JMP BASIC TO BASIC WITH SCRATCH
FEB3: 4C 03 E0 BASCONT JMP BASIC2 CONTINUE BASIC

88

FEB6: 20 75 FE GO JSR A1PC ADR TO PC IF SPEC'D
FEB9: 20 3F FF JSR RESTORE RESTORE META REGS
FEBC: 6C 3A 00 JMP (PCL) GO TO USER SUBR
FEBF: 4C D7 FA REGZ JMP REGDSP TO REG DISPLAY
FEC2: C6 34 TRACE DEC YSAV
FEC4: 20 75 FE STEPZ JSR A1PC ADR TO PC IF SPEC'D
FEC7: 4C 43 FA JMP STEP TAKE ONE STEP
FECA: 4C F8 03 USR JMP USRADR TO USR SUBR AT USRADR
FECD: A9 40 WRITE LDA #$40
FECF: 20 C9 FC JSR HEADR WRITE 10-SEC HEADER
FED2: A0 27 LDY #$27
FED4: A2 00 WR1 LDX #$00
FED6: 41 3C EOR (A1L,X)
FED8: 48 PHA
FED9: A1 3C LDA (A1L,X)
FEDB: 20 ED FE JSR WRBYTE
FEDE: 20 BA FC JSR NXTA1
FEE1: A0 1D LDY #$1D
FEE3: 68 PLA
FEE4: 90 EE BCC WR1
FEE6: A0 22 LDY #$22
FEE8: 20 ED FE JSR WRBYTE
FEEB: F0 4D BEQ BELL
FEED: A2 10 WRBYTE LDX #$10
FEEF: 0A WRBYT2 ASL A
FEF0: 20 D6 FC JSR WRBIT
FEF3: D0 FA BNE WRBYT2
FEF5: 60 RTS
FEF6: 20 00 FE CRMON JSR BL1 HANDLE A CR AS BLANK
FEF9: 68 PLA THEN POP STACK
FEFA: 68 PLA AND RTN TO MON
FEFB: D0 6C BNE MONZ
FEFD: 20 FA FC READ JSR RD2BIT FIND TAPEIN EDGE
FF00: A9 16 LDA #$16
FF02: 20 C9 FC JSR HEADR DELAY 3.5 SECONDS
FF05: 85 2E STA CHKSUM INIT CHKSUM=$FF
FF07: 20 FA FC JSR RD2BIT FIND TAPEIN EDGE
FF0A: A0 24 RD2 LDY #$24 LOOK FOR SYNC BIT
FF0C: 20 FD FC JSR RDBIT (SHORT 0)
FF0F: B0 F9 BCS RD2 LOOP UNTIL FOUND
FF11: 20 FD FC JSR RDBIT SKIP SECOND SYNC H-CYCLE
FF14: A0 3B LDY #$3B INDEX FOR 0/1 TEST
FF16: 20 EC FC RD3 JSR RDBYTE READ A BYTE
FF19: 81 3C STA (A1L,X) STORE AT (A1)
FF1B: 45 2E EOR CHKSUM
FF1D: 85 2E STA CHKSUM UPDATE RUNNING CHKSUM
FF1F: 20 BA FC JSR NXTA1 INC A1, COMPARE TO A2
FF22: A0 35 LDY #$35 COMPENSATE 0/1 INDEX
FF24: 90 F0 BCC RD3 LOOP UNTIL DONE
FF26: 20 EC FC JSR RDBYTE READ CHKSUM BYTE
FF29: C5 2E CMP CHKSUM
FF2B: F0 0D BEQ BELL GOOD, SOUND BELL AND RETURN
FF2D: A9 C5 PRERR LDA #$C5
FF2F: 20 ED FD JSR COUT PRINT "ERR", THEN BELL
FF32: A9 D2 LDA #$D2
FF34: 20 ED FD JSR COUT
FF37: 20 ED FD JSR COUT
FF3A: A9 87 BELL LDA #$87 OUTPUT BELL AND RETURN
FF3C: 4C ED FD JMP COUT
FF3F: A5 48 RESTORE LDA STATUS RESTORE 6502 REG CONTENTS
FF41: 48 PHA USED BY DEBUG SOFTWARE
FF42: A5 45 LDA ACC
FF44: A6 46 RESTR1 LDX XREG
FF46: A4 47 LDY YREG
FF48: 28 PLP
FF49: 60 RTS
FF4A: 85 45 SAVE STA ACC SAVE 6502 REG CONTENTS
FF4C: 86 46 SAV1 STX XREG
FF4E: 84 47 STY YREG
FF50: 08 PHP
FF51: 68 PLA
FF52: 85 48 STA STATUS
FF54: BA TSX
FF55: 86 49 STX SPNT
FF57: D8 CLD
FF58: 60 RTS
FF59: 20 84 FE RESET JSR SETNORM SET SCREEN MODE
FF5C: 20 2F FB JSR INIT AND INIT KBD/SCREEN
FF5F: 20 93 FE JSR SETVID AS I/O DEV'S
FF62: 20 89 FE JSR SETKBD
FF65: D8 MON CLD MUST SET HEX MODE!
FF66: 20 3A FF JSR BELL
FF69: A9 AA MONZ LDA #$AA '*' PROMPT FOR MON
FF6B: 85 33 STA PROMPT
FF6D: 20 67 FD JSR GETLNZ READ A LINE

89

FF70: 20 C7 FF JSR ZMODE CLEAR MON MODE, SCAN IDX
FF73: 20 A7 FF NXTITM JSR GETNUM GET ITEM, NON-HEX
FF76: 84 34 STY YSAV CHAR IN A-REG
FF78: A0 17 LDY #$17 X-REG=0 IF NO HEX INPUT
FF7A: 88 CHRSRCH DEY
FF7B: 30 E8 BMI MON NOT FOUND, GO TO MON
FF7D: D9 CC FF CMP CHRTBL,Y FIND CMND CHAR IN TEL
FF80: D0 F8 BNE CHRSRCH
FF82: 20 BE FF JSR TOSUB FOUND, CALL CORRESPONDING
FF85: A4 34 LDY YSAV SUBROUTINE
FF87: 4C 73 FF JMP NXTITM
FF8A: A2 03 DIG LDX #$03
FF8C: 0A ASL A
FF8D: 0A ASL A GOT HEX DIG,
FF8E: 0A ASL A SHIFT INTO A2
FF8F: 0A ASL A
FF90: 0A NXTBIT ASL A
FF91: 26 3E ROL A2L
FF93: 26 3F ROL A2H
FF95: CA DEX LEAVE X=$FF IF DIG
FF96: 10 F8 BPL NXTBIT
FF98: A5 31 NXTBAS LDA MODE
FF9A: D0 06 BNE NXTBS2 IF MODE IS ZERO
FF9C: B5 3F LDA A2H,X THEN COPY A2 TO
FF9E: 95 3D STA A1H,X A1 AND A3
FFA0: 95 41 STA A3H,X
FFA2: E8 NXTBS2 INX
FFA3: F0 F3 BEQ NXTBAS
FFA5: D0 06 BNE NXTCHR
FFA7: A2 00 GETNUM LDX #$00 CLEAR A2
FFA9: 86 3E STX A2L
FFAB: 86 3F STX A2H
FFAD: B9 00 02 NXTCHR LDA IN,Y GET CHAR
FFB0: C8 INY
FFB1: 49 B0 EOR #$B0
FFB3: C9 0A CMP #$0A
FFB5: 90 D3 BCC DIG IF HEX DIG, THEN
FFB7: 69 88 ADC #$88
FFB9: C9 FA CMP #$FA
FFBB: B0 CD BCS DIG
FFBD: 60 RTS
FFBE: A9 FE TOSUB LDA #GO/256 PUSH HIGH-ORDER
FFC0: 48 PHA SUBR ADR ON STK
FFC1: B9 E3 FF LDA SUBTBL,Y PUSH LOW-ORDER
FFC4: 48 PHA SUBR ADR ON STK
FFC5: A5 31 LDA MODE
FFC7: A0 00 ZMODE LDY #$00 CLR MODE, OLD MODE
FFC9: 84 31 STY MODE TO A-REG
FFCB: 60 RTS GO TO SUBR VIA RTS
FFCC: BC CHRTBL DFB $BC F("CTRL-C")
FFCD: B2 DFB $B2 F("CTRL-Y")
FFCE: BE DFB $BE F("CTRL-E")
FFCF: ED DFB $ED F("T")
FFD0: EF DFB $EF F("V")
FFD1: C4 DFB $C4 F("CTRL-K")
FFD2: EC DFB $EC F("S")
FFD3: A9 DFB $A9 F("CTRL-P")
FFD4: BB DFB $BB F("CTRL-B")
FFD5: A6 DFB $A6 F("-")
FFD6: A4 DFB $A4 F("+")
FFD7: 06 DFB $06 F("M") (F=EX-OR $B0+$89)
FFD8: 95 DFB $95 F("<")
FFD9: 07 DFB $07 F("N")
FFDA: 02 DFB $02 F("I")
FFDB: 05 DFB $05 F("L")
FFDC: F0 DFB $F0 F("W")
FFDD: 00 DFB $00 F("G")
FFDE: EB DFB $EB F("R")
FFDF: 93 DFB $93 F(":")
FFE0: A7 DFB $A7 F(".")
FFE1: C6 DFB $C6 F("CR")
FFE2: 99 DFB $99 F(BLANK)
FFE3: B2 SUBTBL DFB BASCONT-1
FFE4: C9 DFB USR-1
FFE5: BE DFB REGZ-1
FFE6: C1 DFB TRACE-1
FFE7: 35 DFB VFY-1
FFE8: 8C DFB INPRT-1
FFE9: C3 DFB STEPZ-1
FFEA: 96 DFB OUTPRT-1
FFEB: AF DFB XBASIC-1
FFEC: 17 DFB SETMODE-1
FFED: 17 DFB SETMODE-1
FFEE: 2B DFB MOVE-1
FFEF: 1F DFB LT-1

FFF0: 83 DFB #SETNORM-1
FFF1: 7F DFB #SETINV-1
FFF2: 5D DFB #LIST-1
FFF3: CC DFB #WRITE-1
FFF4: F5 DFB #GO-1
FFF5: FC DFB #READ-1
FFF6: 17 DFB #SETMODE-1
FFF7: 17 DFB #SETMODE-1
FFF8: F5 DFB #CRMON-1
FFF9: 03 DFB #BLANK-1
FFFA: FB DFB #NMI NMI VECTOR
FFFB: 03 DFB #NMI/256
FFFC: 59 DFB #RESET RESET VECTOR
FFFD: FF DFB #RESET/256
FFFE: 86 DFB #IRQ IRQ VECTOR
FFFF: FA DFB #IRQ/256
 XQTNZ EQU $3C

90

 * *
 * APPLE-II *
 * MINI-ASSEMBLER *
 * *
 * COPYRIGHT 1977 BY *
 * APPLE COMPUTER INC. *
 * *
 * ALL RIGHTS RESERVED *
 * *
 * S. WOZNIAK *
 * A. BAUM *
 * *

 TITLE "APPLE-II MINI-ASSEMBLER"
 FORMAT EPZ $2E
 LENGTH EPZ $2F
 MODE EPZ $31
 PROMPT EPZ $33
 YSAV EPZ $34
 L EPZ $35
 PCL EPZ $3A
 PCH EPZ $3B
 A1H EPZ $3D
 A2L EPZ $3E
 A2H EPZ $3F
 A4L EPZ $42
 A4H EPZ $43
 FMT EPZ $44
 IN EQU $200
 INSDS2 EQU $F88E
 INSTDSP EQU $F8D0
 PRBL2 EQU $F94A
 PCADJ EQU $F953
 CHAR1 EQU $F9B4
 CHAR2 EQU $F9BA
 MNEML EQU $F9C0
 MNEMR EQU $FA00
 CURSUP EQU $FC1A
 GETLNZ EQU $FD67
 COUT EQU $FDED
 BL1 EQU $FE00
 A1PCLP EQU $FE78
 BELL EQU $FF3A
 GETNUM EQU $FFA7
 TOSUB EQU $FFBE
 ZMODE EQU $FFC7
 CHRTBL EQU $FFCC
 ORG $F500
F500: E9 81 REL SBC #$81 IS FMT COMPATIBLE
F502: 4A LSR A WITH RELATIVE MODE?
F503: D0 14 BNE ERR3 NO.
F505: A4 3F LDY A2H
F507: A6 3E LDX A2L DOUBLE DECREMENT
F509: D0 01 BNE REL2
F50B: 88 DEY
F50C: CA REL2 DEX
F50D: 8A TXA
F50E: 18 CLC
F50F: E5 3A SBC PCL FORM ADDR-PC-2
F511: 85 3E STA A2L
F513: 10 01 BPL REL3
F515: C8 INY
F516: 98 REL3 TYA

91

F517: E5 3B SBC PCH
F519: D0 6B ERR3 BNE ERR ERROR IF >1-BYTE BRANCH
F51B: A4 2F FINDOP LDY LENGTH
F51D: B9 3D 00 FNDOP2 LDA A1H,Y MOVE INST TO (PC)
F520: 91 3A STA (PCL),Y
F522: 88 DEY
F523: 10 F8 BPL FNDOP2
F525: 20 1A FC JSR CURSUP
F528: 20 1A FC JSR CURSUP RESTORE CURSOR
F52B: 20 D0 F8 JSR INSTDSP TYPE FORMATTED LINE
F52E: 20 53 F9 JSR PCADJ UPDATE PC
F531: 84 3B STY PCH
F533: 85 3A STA PCL
F535: 4C 95 F5 JMP NXTLINE GET NEXT LINE
F538: 20 BE FF FAKEMON3 JSR TOSUB GO TO DELIM HANDLER
F53B: A4 34 LDY YSAV RESTORE Y-INDEX
F53D: 20 A7 FF FAKEMON JSR GETNUM READ PARAM
F540: 84 34 STY YSAV SAVE Y-INDEX
F542: A0 17 LDY #$17 INIT DELIMITER INDEX
F544: 88 FAKEMON2 DEY CHECK NEXT DELIM
F545: 30 4B BMI RESETZ ERR IF UNRECOGNIZED DELIM
F547: D9 CC FF CMP CHRTBL,Y COMPARE WITH DELIM TABLE
F54A: D0 F8 BNE FAKEMON2 NO MATCH
F54C: C0 15 CPY #$15 MATCH, IS IT CR?
F54E: D0 E8 BNE FAKEMON3 NO, HANDLE IT IN MONITOR
F550: A5 31 LDA MODE
F552: A0 00 LDY #$0
F554: C6 34 DEC YSAV
F556: 20 00 FE JSR BL1 HANDLE CR OUTSIDE MONITOR
F559: 4C 95 F5 JMP NXTLINE
F55C: A5 3D TRYNEXT LDA A1H GET TRIAL OPCODE
F55E: 20 8E F8 JSR INSDS2 GET FMT+LENGTH FOR OPCODE
F561: AA TAX
F562: BD 00 FA LDA MNEMR,X GET LOWER MNEMONIC BYTE
F565: C5 42 CMP A4L MATCH?
F567: D0 13 BNE NEXTOP NO, TRY NEXT OPCODE.
F569: BD C0 F9 LDA MNEML,X GET UPPER MNEMONIC BYTE
F56C: C5 43 CMP A4H MATCH?
F56E: D0 0C BNE NEXTOP NO, TRY NEXT OPCODE
F570: A5 44 LDA FMT
F572: A4 2E LDY FORMAT GET TRIAL FORMAT
F574: C0 9D CPY #$9D TRIAL FORMAT RELATIVE?
F576: F0 88 BEQ REL YES.
F578: C5 2E NREL CMP FORMAT SAME FORMAT?
F57A: F0 9F BEQ FINDOP YES.
F57C: C6 3D NEXTOP DEC A1H NO, TRY NEXT OPCODE
F57E: D0 DC BNE TRYNEXT
F580: E6 44 INC FMT NO MORE, TRY WITH LEN=2
F582: C6 35 DEC L WAS L=2 ALREADY?
F584: F0 D6 BEQ TRYNEXT NO.
F586: A4 34 ERR LDY YSAV YES, UNRECOGNIZED INST.
F588: 98 ERR2 TYA
F589: AA TAX
F58A: 20 4A F9 JSR PRBL2 PRINT ^ UNDER LAST READ
F58D: A9 DE LDA #$DE CHAR TO INDICATE ERROR
F58F: 20 ED FD JSR COUT POSITION.
F592: 20 3A FF RESETZ JSR BELL
F595: A9 A1 NXTLINE LDA #$A1 '!'
F597: 85 33 STA PROMPT INITIALIZE PROMPT
F599: 20 67 FD JSR GETLNZ GET LINE.
F59C: 20 C7 FF JSR ZMODE INIT SCREEN STUFF
F59F: AD 00 02 LDA IN GET CHAR
F5A2: C9 A0 CMP #$A0 ASCII BLANK?
F5A4: F0 13 * BEQ SPACE YES
F5A6: C8 INY
F5A7: C9 A4 CMP #$A4 ASCII '$' IN COL 1?
F5A9: F0 92 BEQ FAKEMON YES, SIMULATE MONITOR
F5AB: 88 DEY NO, BACKUP A CHAR
F5AC: 20 A7 FF JSR GETNUM GET A NUMBER
F5AF: C9 93 CMP #$93 ':' TERMINATOR?
F5B1: D0 D5 ERR4 BNE ERR2 NO, ERR.
F5B3: 8A TXA
F5B4: F0 D2 BEQ ERR2 NO ADR PRECEDING COLON.
F5B6: 20 78 FE JSR A1PCLP MOVE ADR TO PCL, PCH.
F5B9: A9 03 SPACE LDA #$3 COUNT OF CHARS IN MNEMONIC
F5BB: 85 3D STA A1H
F5BD: 20 34 F6 NXTMN JSR GETNSP GET FIRST MNEM CHAR.
F5C0: 0A NXTM ASL A
F5C1: E9 BE SBC #$BE SUBTRACT OFFSET
F5C3: C9 C2 CMP #$C2 LEGAL CHAR?
F5C5: 90 C1 BCC ERR2 NO.
F5C7: 0A ASL A COMPRESS-LEFT JUSTIFY
F5C8: 0A ASL A
F5C9: A2 04 LDX #$4
F5CB: 0A NXTM2 ASL A DO 5 TRIPLE WORD SHIFTS

92

F5CC: 26 42 ROL A4L
F5CE: 26 43 ROL A4H
F5D0: CA DEX
F5D1: 10 F8 BPL NXTM2
F5D3: C6 3D DEC A1H DONE WITH 3 CHARS?
F5D5: F0 F4 BEQ NXTM2 YES, BUT DO 1 MORE SHIFT
F5D7: 10 E4 BPL NXTMN NO
F5D9: A2 05 FORM1 LDX #$5 5 CHARS IN ADDR MODE
F5DB: 20 34 F6 FORM2 JSR GETNSP GET FIRST CHAR OF ADDR
F5DE: 84 34 STY YSAV
F5E0: DD B4 F9 CMP CHAR1,X FIRST CHAR MATCH PATTERN?
F5E3: D0 13 BNE FORM3 NO
F5E5: 20 34 F6 JSR GETNSP YES, GET SECOND CHAR
F5E8: DD BA F9 CMP CHAR2,X MATCHES SECOND HALF?
F5EB: F0 0D BEQ FORM5 YES.
F5ED: BD BA F9 LDA CHAR2,X NO, IS SECOND HALF ZERO?
F5F0: F0 07 BEQ FORM4 YES.
F5F2: C9 A4 CMP #$A4 NO,SECOND HALF OPTIONAL?
F5F4: F0 03 BEQ FORM4 YES.
F5F6: A4 34 LDY YSAV
F5F8: 18 FORM3 CLC CLEAR BIT-NO MATCH
F5F9: 88 FORM4 DEY BACK UP 1 CHAR
F5FA: 26 44 FORM5 ROL FMT FORM FORMAT BYTE
F5FC: E0 03 CPX #$3 TIME TO CHECK FOR ADDR.
F5FE: D0 0D BNE FORM7 NO
F600: 20 A7 FF JSR GETNUM YES
F603: A5 3F LDA A2H
F605: F0 01 BEQ FORM6 HIGH-ORDER BYTE ZERO
F607: E8 INX NO, INCR FOR 2-BYTE
F608: 86 35 FORM6 STX L STORE LENGTH
F60A: A2 03 LDX #$3 RELOAD FORMAT INDEX
F60C: 88 DEY BACKUP A CHAR
F60D: 86 3D FORM7 STX A1H SAVE INDEX
F60F: CA DEX DONE WITH FORMAT CHECK?
F610: 10 C9 BPL FORM2 NO.
F612: A5 44 LDA FMT YES, PUT LENGTH
F614: 0A ASL A IN LOW BITS
F615: 0A ASL A
F616: 05 35 ORA L
F618: C9 20 CMP #$20
F61A: B0 06 BCS FORM8 ADD "$" IF NONZERO LENGTH
F61C: A6 35 LDX L AND DON'T ALREADY HAVE IT
F61E: F0 02 BEQ FORM8
F620: 09 80 ORA #$80
F622: 85 44 FORM8 STA FMT
F624: 84 34 STY YSAV
F626: B9 00 02 LDA IN,Y GET NEXT NONBLANK
F629: C9 BB CMP #$BB ';' START OF COMMENT?
F62B: F0 04 BEQ FORM9 YES
F62D: C9 8D CMP #$8D CARRIAGE RETURN?
F62F: D0 80 BNE ERR4 NO, ERR.
F631: 4C 5C F5 FORM9 JMP TRYNEXT
F634: B9 00 02 GETNSP LDA IN,Y
F637: C8 INY
F638: C9 A0 CMP #$A0 GET NEXT NON BLANK CHAR
F63A: F0 F8 BEQ GETNSP
F63C: 60 RTS
 ORG $F666
F666: 4C 92 F5 MINASM JMP RESETZ

93

 * *
 * APPLE-II FLOATING *
 * POINT ROUTINES *
 * *
 * COPYRIGHT 1977 BY *
 * APPLE COMPUTER INC. *
 * *
 * ALL RIGHTS RESERVED *
 * *
 * S. WOZNIAK *
 * *

 TITLE "FLOATING POINT ROUTINES"
 SIGN EPZ $F3
 X2 EPZ $F4
 M2 EPZ $F5
 X1 EPZ $F8
 M1 EPZ $F9
 E EPZ $FC
 OVLOC EQU $3F5
 ORG $F425
F425: 18 ADD CLC CLEAR CARRY
F426: A2 02 LDX #$2 INDEX FOR 3-BYTE ADD.
F428: B5 F9 ADD1 LDA M1,X
F42A: 75 F5 ADC M2,X ADD A BYTE OF MANT2 TO MANT1
F42C: 95 F9 STA M1,X
F42E: CA DEX INDEX TO NEXT MORE SIGNIF. BYTE.
F42F: 10 F7 BPL ADD1 LOOP UNTIL DONE.
F431: 60 RTS RETURN
F432: 06 F3 MD1 ASL SIGN CLEAR LSB OF SIGN.
F434: 20 37 F4 JSR ABSWAP ABS VAL OF M1, THEN SWAP WITH M2
F437: 24 F9 ABSWAP BIT M1 MANT1 NEGATIVE?
F439: 10 05 BPL ABSWAP1 NO, SWAP WITH MANT2 AND RETURN.
F43B: 20 A4 F4 JSR FCOMPL YES, COMPLEMENT IT.
F43E: E6 F3 INC SIGN INCR SIGN, COMPLEMENTING LSB.
F440: 38 ABSWAP1 SEC SET CARRY FOR RETURN TO MUL/DIV.
F441: A2 04 SWAP LDX #$4 INDEX FOR 4 BYTE SWAP.
F443: 94 FB SWAP1 STY E-1,X
F445: B5 F7 LDA X1-1,X SWAP A BYTE OF EXP/MANT1 WITH
F447: B4 F3 LDY X2-1,X EXP/MANT2 AND LEAVE A COPY OF
F449: 94 F7 STY X1-1,X MANT1 IN E (3 BYTES). E+3 USED
F44B: 95 F3 STA X2-1,X
F44D: CA DEX ADVANCE INDEX TO NEXT BYTE
F44E: D0 F3 BNE SWAP1 LOOP UNTIL DONE.
F450: 60 RTS RETURN
F451: A9 8E FLOAT LDA #$8E INIT EXP1 TO 14,
F453: 85 F8 STA X1 THEN NORMALIZE TO FLOAT.
F455: A5 F9 NORM1 LDA M1 HIGH-ORDER MANT1 BYTE.
F457: C9 C0 CMP #$C0 UPPER TWO BITS UNEQUAL?
F459: 30 0C BMI RTS1 YES, RETURN WITH MANT1 NORMALIZED
F45B: C6 F8 DEC X1 DECREMENT EXP1.
F45D: 06 FB ASL M1+2
F45F: 26 FA ROL M1+1 SHIFT MANT1 (3 BYTES) LEFT.
F461: 26 F9 ROL M1
F463: A5 F8 NORM LDA X1 EXP1 ZERO?
F465: D0 EE BNE NORM1 NO, CONTINUE NORMALIZING.
F467: 60 RTS1 RTS RETURN.
F468: 20 A4 F4 FSUB JSR FCOMPL CMPL MANT1,CLEARS CARRY UNLESS 0
F46B: 20 7B F4 SWPALGN JSR ALGNSWP RIGHT SHIFT MANT1 OR SWAP WITH
F46E: A5 F4 FADD LDA X2
F470: C5 F8 CMP X1 COMPARE EXP1 WITH EXP2.
F472: D0 F7 BNE SWPALGN IF #,SWAP ADDENDS OR ALIGN MANTS.
F474: 20 25 F4 JSR ADD ADD ALIGNED MANTISSAS.
F477: 50 EA ADDEND BVC NORM NO OVERFLOW, NORMALIZE RESULT.
F479: 70 05 BVS RTLOG OV: SHIFT M1 RIGHT, CARRY INTO SIGN

94

95

F47B: 90 C4 ALGNSWP BCC SWAP SWAP IF CARRY CLEAR,
 * ELSE SHIFT RIGHT ARITH.
F47D: A5 F9 RTAR LDA M1 SIGN OF MANT1 INTO CARRY FOR
F47F: 0A ASL RIGHT ARITH SHIFT.
F480: E6 F8 RTLOG INC X1 INCR X1 TO ADJUST FOR RIGHT SHIFT
F482: F0 75 BEQ OVFL EXP1 OUT OF RANGE.
F484: A2 FA RTLOG1 LDX #$FA INDEX FOR 6:BYTE RIGHT SHIFT.
F486: 76 FF ROR1 ROR E+3,X
F488: E8 INX NEXT BYTE OF SHIFT.
F489: D0 FB BNE ROR1 LOOP UNTIL DONE.
F48B: 60 RTS RETURN.
F48C: 20 32 F4 FMUL JSR MD1 ABS VAL OF MANT1, MANT2
F48F: 65 F8 ADC X1 ADD EXP1 TO EXP2 FOR PRODUCT EXP
F491: 20 E2 F4 JSR MD2 CHECK PROD. EXP AND PREP. FOR MUL
F494: 18 CLC CLEAR CARRY FOR FIRST BIT.
F495: 20 84 F4 MUL1 JSR RTLOG1 M1 AND E RIGHT (PROD AND MPLIER)
F498: 90 03 BCC MUL2 IF CARRY CLEAR, SKIP PARTIAL PROD
F49A: 20 25 F4 JSR ADD ADD MULTIPLICAND TO PRODUCT.
F49D: 88 MUL2 DEY NEXT MUL ITERATION.
F49E: 10 F5 BPL MUL1 LOOP UNTIL DONE.
F4A0: 46 F3 MDEND LSR SIGN TEST SIGN LSB.
F4A2: 90 BF NORMX BCC NORM IF EVEN,NORMALIZE PROD,ELSE COMP
F4A4: 38 FCOMPL SEC SET CARRY FOR SUBTRACT.
F4A5: A2 03 LDX #$3 INDEX FOR 3 BYTE SUBTRACT.
F4A7: A9 00 COMPL1 LDA #$0 CLEAR A.
F4A9: F5 F8 SBC X1,X SUBTRACT BYTE OF EXP1.
F4AB: 95 F8 STA X1,X RESTORE IT.
F4AD: CA DEX NEXT MORE SIGNIFICANT BYTE.
F4AE: D0 F7 BNE COMPL1 LOOP UNTIL DONE.
F4B0: F0 C5 BEQ ADDEND NORMALIZE (OR SHIFT RT IF OVFL).
F4B2: 20 32 F4 FDIV JSR MD1 TAKE ABS VAL OF MANT1, MANT2.
F4B5: E5 F8 SBC X1 SUBTRACT EXP1 FROM EXP2.
F4B7: 20 E2 F4 JSR MD2 SAVE AS QUOTIENT EXP.
F4BA: 38 DIV1 SEC SET CARRY FOR SUBTRACT.
F4BB: A2 02 LDX #$2 INDEX FOR 3-BYTE SUBTRACTION.
F4BD: B5 F5 DIV2 LDA M2,X
F4BF: F5 FC SBC E,X SUBTRACT A BYTE OF E FROM MANT2.
F4C1: 48 PHA SAVE ON STACK.
F4C2: CA DEX NEXT MORE SIGNIFICANT BYTE.
F4C3: 10 F8 BPL DIV2 LOOP UNTIL DONE.
F4C5: A2 FD LDX #$FD INDEX FOR 3-BYTE CONDITIONAL MOVE
F4C7: 68 DIV3 PLA PULL BYTE OF DIFFERENCE OFF STACK
F4C8: 90 02 BCC DIV4 IF M2<E THEN DON'T RESTORE M2.
F4CA: 95 F8 STA M2+3,X
F4CC: E8 DIV4 INX NEXT LESS SIGNIFICANT BYTE.
F4CD: D0 F8 BNE DIV3 LOOP UNTIL DONE.
F4CF: 26 FB ROL M1+2
F4D1: 26 FA ROL M1+1 ROLL QUOTIENT LEFT, CARRY INTO LSB
F4D3: 26 F9 ROL M1
F4D5: 06 F7 ASL M2+2
F4D7: 26 F6 ROL M2+1 SHIFT DIVIDEND LEFT
F4D9: 26 F5 ROL M2
F4DB: B0 1C BCS OVFL OVFL IS DUE TO UNNORMED DIVISOR
F4DD: 88 DEY NEXT DIVIDE ITERATION.
F4DE: D0 DA BNE DIV1 LOOP UNTIL DONE 23 ITERATIONS.
F4E0: F0 BE BEQ MDEND NORM. QUOTIENT AND CORRECT SIGN.
F4E2: 86 FB MD2 STX M1+2
F4E4: 86 FA STX M1+1 CLEAR MANT1 (3 BYTES) FOR MUL/DIV.
F4E6: 86 F9 STX M1
F4E8: B0 0D BCS OVCHK IF CALC. SET CARRY,CHECK FOR OVFL
F4EA: 30 04 BMI MD3 IF NEG THEN NO UNDERFLOW.
F4EC: 68 PLA POP ONE RETURN LEVEL.
F4ED: 68 PLA
F4EE: 90 B2 BCC NORMX CLEAR X1 AND RETURN.
F4F0: 49 80 MD3 EOR #$80 COMPLEMENT SIGN BIT OF EXPONENT.
F4F2: 85 F8 STA X1 STORE IT.
F4F4: A0 17 LDY #$17 COUNT 24 MUL/23 DIV ITERATIONS.
F4F6: 60 RTS RETURN.
F4F7: 10 F7 OVCHK BPL MD3 IF POSITIVE EXP THEN NO OVFL.
F4F9: 4C F5 03 OVFL JMP OVLOC
 ORG $F63D
F63D: 20 7D F4 FIX1 JSR RTAR
F640: A5 F8 FIX LDA X1
F642: 10 13 BPL UNDFL
F644: C9 8E CMP #$8E
F646: D0 F5 BNE FIX1
F648: 24 F9 BIT M1
F64A: 10 0A BPL FIXRTS
F64C: A5 FB LDA M1+2
F64E: F0 06 BEQ FIXRTS
F650: E6 FA INC M1+1
F652: D0 02 BNE FIXRTS
F654: E6 F9 INC M1
F656: 60 FIXRTS RTS
F657: A9 00 UNDFL LDA #$0
F659: 85 F9 STA M1
F65B: 85 FA STA M1+1
F65D: 60 RTS

 * *
 * APPLE-II PSEUDO *
 * MACHINE INTERPRETER *
 * *
 * COPYRIGHT 1977 *
 * APPLE COMPUTER INC *
 * *
 * ALL RIGHTS RESERVED *
 * *
 * S. WOZNIAK *
 * *

 TITLE "SWEET16 INTERPRETER"
 R0L EPZ $0
 R0H EPZ $1
 R14H EPZ $1D
 R15L EPZ $1E
 R15H EPZ $1F
 S16PAG EQU $F7
 SAVE EQU $FF4A
 RESTORE EQU $FF3F
 ORG $F689
F689: 20 4A FF SW16 JSR SAVE PRESERVE 6502 REG CONTENTS
F68C: 68 PLA
F68D: 85 1E STA R15L INIT SWEET16 PC
F68F: 68 PLA FROM RETURN
F690: 85 1F STA R15H ADDRESS
F692: 20 98 F6 SW16B JSR SW16C INTERPRET AND EXECUTE
F695: 4C 92 F6 JMP SW16B ONE SWEET16 INSTR.
F698: E6 1E SW16C INC R15L
F69A: D0 02 BNE SW16D INCR SWEET16 PC FOR FETCH
F69C: E6 1F INC R15H
F69E: A9 F7 SW16D LDA #SW16PAG
F6A0: 48 PHA PUSH ON STACK FOR RTS
F6A1: A0 00 LDY #$0
F6A3: B1 1E LDA (R15L),Y FETCH INSTR
F6A5: 29 0F AND #$F MASK REG SPECIFICATION
F6A7: 0A ASL A DOUBLE FOR TWO BYTE REGISTERS
F6A8: AA TAX TO X REG FOR INDEXING
F6A9: 4A LSR A
F6AA: 51 1E EOR (R15L),Y NOW HAVE OPCODE
F6AC: F0 0B BEQ TOBR IF ZERO THEN NON-REG OP
F6AE: 86 1D STX R14H INDICATE'PRIOR RESULT REG'
F6B0: 4A LSR A
F6B1: 4A LSR A OPCODE*2 TO LSB'S
F6B2: 4A LSR A
F6B3: A8 TAY TO Y REG FOR INDEXING
F6B4: B9 E1 F6 LDA OPTBL-2,Y LOW ORDER ADR BYTE
F6B7: 48 PHA ONTO STACK
F6B8: 60 RTS GOTO REG-OP ROUTINE
F6B9: E6 1E TOBR INC R15L
F6BB: D0 02 BNE TOBR2 INCR PC
F6BD: E6 1F INC R15H
F6BF: BD E4 F6 TOBR2 LDA BRTBL,X LOW ORDER ADR BYTE
F6C2: 48 PHA ONTO STACK FOR NON-REG OP
F6C3: A5 1D LDA R14H 'PRIOR RESULT REG' INDEX
F6C5: 4A LSR A PREPARE CARRY FOR BC, BNC.
F6C6: 60 RTS GOTO NON-REG OP ROUTINE
F6C7: 68 RTNZ PLA POP RETURN ADDRESS
F6C8: 68 PLA
F6C9: 20 3F FF JSR RESTORE RESTORE 6502 REG CONTENTS
F6CC: 6C 1E 00 JMP (R15L) RETURN TO 6502 CODE VIA PC
F6CF: B1 1E SETZ LDA (R15L),Y HIGH-ORDER BYTE OF CONSTANT

96

97

F6D1: 95 01 STA R0H,X
F6D3: 88 DEY
F6D4: B1 1E LDA (R15L),Y LOW-ORDER BYTE OF CONSTANT
F6D6: 95 00 STA R0L,X
F6D8: 98 TYA Y-REG CONTAINS 1
F6D9: 38 SEC
F6DA: 65 1E ADC R15L ADD 2 TO PC
F6DC: 85 1E STA R15L
F6DE: 90 02 BCC SET2
F6E0: E6 1F INC R15H
F6E2: 60 SET2 RTS
F6E3: 02 OPTBL DFB SET-1 (1X)
F6E4: F9 BRTBL DFB RTN-1 (0)
F6E5: 04 DFB LD-1 (2X)
F6E6: 9D DFB BR-1 (1)
F6E7: 0D DFB ST-1 (3X)
F6E8: 9E DFB BNC-1 (2)
F6E9: 25 DFB LDAT-1 (4X)
F6EA: AF DFB BC-1 (3)
F6EB: 16 DFB STAT-1 (5X)
F6EC: B2 DFB BP-1 (4)
F6ED: 47 DFB LDDAT-1 (6X)
F6EE: B9 DFB BM-1 (5)
F6EF: 51 DFB STDAT-1 (7X)
F6F0: C0 DFB BZ-1 (6)
F6F1: 2F DFB POP-1 (8X)
F6F2: C9 DFB BNZ-1 (7)
F6F3: 5B DFB STPAT-1 (9X)
F6F4: D2 DFB BM1-1 (8)
F6F5: 85 DFB ADD-1 (AX)
F6F6: DD DFB BNM1-1 (9)
F6F7: 6E DFB SUB-1 (BX)
F6F8: 05 DFB BK-1 (A)
F6F9: 33 DFB POPD-1 (CX)
F6FA: E8 DFB RS-1 (B)
F6FB: 70 DFB CPR-1 (DX)
F6FC: 93 DFB BS-1 (C)
F6FD: 1E DFB INR-1 (EX)
F6FE: E7 DFB NUL-1 (D)
F6FF: 65 DFB DCR-1 (FX)
F700: E7 DFB NUL-1 (E)
F701: E7 DFB NUL-1 (UNUSED)
F702: E7 DFB NUL-1 (F)
F703: 10 CA SET BPL SETZ ALWAYS TAKEN
F705: B5 00 LD LDA R0L,X
 BK EQU *-1
F707: 85 00 STA R0L
F709: B5 01 LDA R0H,X MOVE RX TO R0
F70B: 85 01 STA R0H
F70D: 60 RTS
F70E: A5 00 ST LDA R0L
F710: 95 00 STA R0L,X MOVE R0 TO RX
F712: A5 01 LDA R0H
F714: 95 01 STA R0H,X
F716: 60 RTS
F717: A5 00 STAT LDA R0L
F719: 81 00 STAT2 STA (R0L,X) STORE BYTE INDIRECT
F71B: A0 00 LDY #$0
F71D: 84 1D STAT3 STY R14H INDICATE R0 IS RESULT NEG
F71F: F6 00 INR INC R0L,X
F721: D0 02 BNE INR2 INCR RX
F723: F6 01 INC R0H,X
F725: 60 INR2 RTS
F726: A1 00 LDAT LDA (R0L,X) LOAD INDIRECT (RX)
F728: 85 00 STA R0L TO R0
F72A: A0 00 LDY #$0
F72C: 84 01 STY R0H ZERO HIGH-ORDER R0 BYTE
F72E: F0 ED BEQ STAT3 ALWAYS TAKEN
F730: A0 00 POP LDY #$0 HIGH ORDER BYTE = 0
F732: F0 06 BEQ POP2 ALWAYS TAKEN
F734: 20 66 F7 POPD JSR DCR DECR RX
F737: A1 00 LDA (R0L,X) POP HIGH ORDER BYTE @RX
F739: A8 TAY SAVE IN Y-REG
F73A: 20 66 F7 POP2 JSR DCR DECR RX
F73D: A1 00 LDA (R0L,X) LOW-ORDER BYTE
F73F: 85 00 STA R0L TO R0
F741: 84 01 STY R0H
F743: A0 00 POP3 LDY #$0 INDICATE R0 AS LAST RESULT REG
F745: 84 1D STY R14H
F747: 60 RTS
F748: 20 26 F7 LDDAT JSR LDAT LOW-ORDER BYTE TO R0, INCR RX
F74B: A1 00 LDA (R0L,X) HIGH-ORDER BYTE TO R0
F74D: 85 01 STA R0H
F74F: 4C 1F F7 JMP INR INCR RX
F752: 20 17 F7 STDAT JSR STAT STORE INDIRECT LOW-ORDER

98

F755: A5 01 LDA R0H BYTE AND INCR RX. THEN
F757: 81 00 STA (R0L,X) STORE HIGH-ORDER BYTE.
F759: 4C 1F F7 JMP INR INCR RX AND RETURN
F75C: 20 66 F7 STPAT JSR DCR DECR RX
F75F: A5 00 LDA R0L
F761: 81 00 STA (R0L,X) STORE R0 LOW BYTE @RX
F763: 4C 43 F7 JMP POP3 INDICATE R0 AS LAST RSLT REG
F766: B5 00 DCR LDA R0L,X
F768: D0 02 BNE DCR2 DECR RX
F76A: D6 01 DEC R0H,X
F76C: D6 00 DCR2 DEC R0L,X
F76E: 60 RTS
F76F: A0 00 SUB LDY #$0 RESULT TO R0
F771: 38 CPR SEC NOTE Y-REG = 13*2 FOR CPR
F772: A5 00 LDA R0L
F774: F5 00 SBC R0L,X
F776: 99 00 00 STA R0L,Y R0-RX TO RY
F779: A5 01 LDA R0H
F77B: F5 01 SBC R0H,X
F77D: 99 01 00 SUB2 STA R0H,Y
F780: 98 TYA LAST RESULT REG*2
F781: 69 00 ADC #$0 CARRY TO LSB
F783: 85 1D STA R14H
F785: 60 RTS
F786: A5 00 ADD LDA R0L
F788: 75 00 ADC R0L,X
F78A: 85 00 STA R0L R0+RX TO R0
F78C: A5 01 LDA R0H
F78E: 75 01 ADC R0H,X
F790: A0 00 LDY #$0 R0 FOR RESULT
F792: F0 E9 BEQ SUB2 FINISH ADD
F794: A5 1E BS LDA R15L NOTE X-REG IS 12*2!
F796: 20 19 F7 JSR STAT2 PUSH LOW PC BYTE VIA R12
F799: A5 1F LDA R15H
F79B: 20 19 F7 JSR STAT2 PUSH HIGH-ORDER PC BYTE
F79E: 18 BR CLC
F79F: B0 0E BNC BCS BNC2 NO CARRY TEST
F7A1: B1 1E BR1 LDA (R15L),Y DISPLACEMENT BYTE
F7A3: 10 01 BPL BR2
F7A5: 88 DEY
F7A6: 65 1E BR2 ADC R15L ADD TO PC
F7A8: 85 1E STA R15L
F7AA: 98 TYA
F7AB: 65 1F ADC R15H
F7AD: 85 1F STA R15H
F7AF: 60 BNC2 RTS
F7B0: B0 EC BC BCS BR
F7B2: 60 RTS
F7B3: 0A BP ASL A DOUBLE RESULT-REG INDEX
F7B4: AA TAX TO X REG FOR INDEXING
F7B5: B5 01 LDA R0H,X TEST FOR PLUS
F7B7: 10 E8 BPL BR1 BRANCH IF SO
F7B9: 60 RTS
F7BA: 0A BM ASL A DOUBLE RESULT-REG INDEX
F7BB: AA TAX
F7BC: B5 01 LDA R0H,X TEST FOR MINUS
F7BE: 30 E1 BMI BR1
F7C0: 60 RTS
F7C1: 0A BZ ASL A DOUBLE RESULT-REG INDEX
F7C2: AA TAX
F7C3: B5 00 LDA R0L,X TEST FOR ZERO
F7C5: 15 01 ORA R0H,X (BOTH BYTES)
F7C7: F0 D8 BEQ BR1 BRANCH IF SO
F7C9: 60 RTS
F7CA: 0A BNZ ASL A DOUBLE RESULT-REG INDEX
F7CB: AA TAX
F7CC: B5 00 LDA R0L,X TEST FOR NON-ZERO
F7CE: 15 01 ORA R0H,X (BOTH BYTES)
F7D0: D0 CF BNE BR1 BRANCH IF SO
F7D2: 60 RTS
F7D3: 0A BM1 ASL A DOUBLE RESULT-REG INDEX
F7D4: AA TAX
F7D5: B5 00 LDA R0L,X CHECK BOTH BYTES
F7D7: 35 01 AND R0H,X FOR $FF (MINUS 1)
F7D9: 49 FF EOR #$FF
F7DB: F0 C4 BEQ BR1 BRANCH IF SO
F7DD: 60 RTS
F7DE: 0A BNM1 ASL A DOUBLE RESULT-REG INDEX
F7DF: AA TAX
F7E0: B5 00 LDA R0L,X
F7E2: 35 01 AND R0H,X CHECK BOTH BYTES FOR NO $FF
F7E4: 49 FF EOR #$FF
F7E6: D0 B9 BNE BR1 BRANCH IF NOT MINUS 1
F7E8: 60 NUL RTS
F7E9: A2 18 RS LDX #$18 12*2 FOR R12 AS STK POINTER

F7EB: 20 66 F7 JSR DCR DECR STACK POINTER
F7EE: A1 00 LDA (R0L,X) POP HIGH RETURN ADR TO PC
F7F0: 85 1F STA R15H
F7F2: 20 66 F7 JSR DCR SAME FOR LOW-ORDER BYTE
F7F5: A1 00 LDA (R0L,X)
F7F7: 85 1E STA R15L
F7F9: 60 RTS
F7FA: 4C C7 F6 RTN JMP RTNZ

99

100

6502 MICROPROCESSOR INSTRUCTIONS

LDA
LDX
LDY
LSR

NOP
ORA
PHA
PHP
PLA
PLP
ROL

ROR

RTI
RTS
SBC

SEC
SED
SEI
STA
STX
STY
TAX
TAY
TSX
TXA
TXS
TYA

ADC

AND
ASL

BCC
BCS
BEQ
BIT

BMI
BNE
BPL
BRK
BVC
BVS
CLC
CLD
CLI
CLV
CMP
CPX
CPY
DEC
DEX
DEY
EOR

INC
INX
INY
JMP
JSR

Add Memory to Accumulator with
Carry
"AND" Memory with Accumulator
Shift Left One Bit (Memory or
Accumulator)
Branch on Carry Clear
Branch on Carry Set
Branch on Result Zero
Test Bits in Memory with
Accumulator
Branch on Result Minus
Branch on Result not Zero
Branch on Result Plus
Force Break
Branch on Over�ow Clear
Branch on Over�ow Set
Clear Carry Flag
Clear Decimal Mode
Clear Interrupt Disable Bit
Clear Over�ow Flag
Compare Memory and Accumulator
Compare Memory and Index X
Compare Memory and Index Y
Decrement Memory by One
Decrement index X by One
Decrement Index Y by One
"Exclusive-Or" Memory with
Accumulator
Increment Memory by One
Increment Index X by One
Increment Index Y by One
Jump to New Location
Jump to New Location Saving
Return Address

Load Accumulator with Memory
Load Index X with Memory
Load Index Y with Memory
Shift Right one Bit (Memory or
Accumulator)
No Operation
OR Memory with Accumulator
Push Accumulator on Stack
Push Processor Status on Stack
Pull Accumulator from Stack
Pull Processor Status from Slack
Rotate One Bit Left (Memory or
Accumulator)
Rotate One Bit Right (Memory or
Accumulator)
Return from Interrupt
Return from Subroutine
Subtract Memory from Accumulator
with Borrow
Set Carry Flag
Set Decimal Mode
Set Interrupt Disable Status
Store Accumulator in Memory
Store Index X in Memory
Store Index Y in Memory
Transfer Accumulator to Index X
Transfer Accumulator to Index Y
Transfer Stack Pointer to Index X
Transfer Index X to Accumulator
Transfer Index X to Stack Pointer
Transfer Index Y to Accumulator

C

7 0

7 0

7 0

7 0

7 0

A

X

Y

PCL

S

7 6 5 4 C

7 6 5 4 3 2 1 0

M OR A

C 0

3 2 1 0

7 6 5 4 3 2 1 0

PROGRAMMING MODEL

FIGURE 1. ASL-SHIFT LEFT ONE BIT OPERATION

FIGURE 2 ROTATE ONE BIT LEFT (MEMORY
OR ACCUMULATOR)

FIGURE 3.

ACCUMULATOR

INDEX REGISTER Y

INDEX REGISTER X

PROGRAM COUNTER

STACK POINTER

CARRY
ZERO
INTERRUPT DISABLE
DECIMAL MODE
BREAK COMMAND
OVERFLOW
NEGATIVE

15
PCH

01

Accumulator
lndex Registers
Memory
Borrow
Processor Status Register
Stack Pointer
Change
No Change
Add
Logica l AND
Subtract
Logica l Exclus ive OR
Transfer From Slack
Transfer To Stack
Transfer To
Transfer To
Logica l OR
Program Counter
Program Conter High
Program Counter low
Operrand
lmmediate Address ing Mode

7 0

N V B D I Z C

101

A
X, Y
M

P
S

—
+

-

↑
↓
→
←
V
PC
PCH
PCL
OPER
Bit 6 and 7 are transferred to the status register. If the

result of A M is zero than Z=1, otherwise Z=0.

NOTE 1: BIT – TEST BITS

PROCESSOR STATUS REGISTER, "P"

THE FOLLOWING NOTATION
APPLIES TO THIS SUMMARY:

102

−
−

−
−

−
−

Na
m

e
De

sc
rip

tio
n

Op
er

at
io

n
Ad

dr
es

si
ng

M
od

e

As
se

m
bl

y
La

ng
ua

ge
Fo

rm

HE
X

OP Co
de

No
.

By
te

s
“P

”
St

at
es

 R
eg

.
N

Z
C

I D
 V

Ad
dr

es
si

ng
M

od
e

As
se

m
bl

y
La

ng
ua

ge
Fo

rm

HE
X

OP Co
de

No
.

By
te

s
“P

”
St

at
es

 R
eg

.
N

Z
C

I D
 V

BV
S

CL
C

CL
D

CL
I

CL
V

CM
P

CP
X

CP
Y

DE
C

DE
X

DE
Y

B
ra

nc
h

on
 o

ve
rf

lo
w

 s
et

C
le

ar
 c

ar
ry

 f
la

g

C
le

ar
 o

ve
rf

lo
w

 f
la

g

C
le

ar
 d

ec
im

al
 m

od
e

C
om

pa
re

 m
em

or
y

an
d

ac
cu

m
ul

at
or

C
om

pa
re

 m
em

or
y

an
d

in
de

x
X

C
om

pa
re

 m
em

or
y

an
d

in
de

x
Y

D
ec

re
m

en
t

m
em

or
y

by
 o

ne

D
ec

re
m

en
t

in
de

x
X

by
 o

ne

D
ec

re
m

en
t

in
de

x
Y

by
 o

ne

Im
pl

ie
d

C
LV

Im
pl

ie
d

D
EY

2 2 2 2 2 2 2 211112
70 18 D

8

58 B
8

C
9

C
5

D
5

C
D

D
D

D
9

C
1

D
1

2 2 3 2 2 3

E0 E4 EC C
0

C
4

C
C

C
6

D
6

C
E

D
E

C
A 88

AN
D

AS
L

BC
C

BC
S

BE
Q

BI
T

BM
I

BN
E

BP
L

BR
K

Im
m

ed
ia

te
Ze

ro
 P

ag
e

Ze
ro

 P
ag

e
X

A
bs

ol
ut

e
A

bs
ol

ut
e

X
A

bs
ol

ut
e

Y
(I

nd
ir

ec
t,

X)
(I

nd
ir

ec
t)

,Y

A
cc

um
ul

at
or

Ze
ro

 P
ag

e
Ze

ro
 P

ag
e

X
A

bs
ol

ut
e

A
bs

ol
ut

e
X

R
el

at
iv

e

R
el

at
iv

e

R
el

at
iv

e

2 2 2 3 3 3 2 2

29 25 35 20 30 39 21 31

1 2 2 3 3

0A 06 16 0E 1E

A
N

D
 #

O
pe

r
A

N
D

O

pe
r

A
N

D

O
pe

r,
X

A
N

D

O
pe

r
A

N
D

O

pe
r,

X
A

N
D

O

pe
r,

Y
A

N
D

(O

pe
r,

X)
A

N
D

(O

pe
r)

,Y

A
S

L
 A

A
S

L
 O

pe
r

A
S

L
 O

pe
r,

X
A

S
L

 O
pe

r
A

S
L

 O
pe

r,
X

B
C

C

O
pe

r

B
C

S

O
pe

r

B
EQ

O

pe
r

B
M

I
 O

pe
r

B
N

E
 O

pe
r

B
PL

op

er

B
R

K
*

Im
pl

ie
d

R
el

at
iv

e
B

VC

O
pe

r

B
IT

*
O

pe
r

B
IT

*
O

pe
r

R
el

at
iv

e

R
el

at
iv

e

R
el

at
iv

e

90 B
0 F0

2 2 2

24 2C
2 3

30
2 2

D
0 10 00 50

2 1 2

(S
ee

 F
ig

ur
e

1)

1 12 2 3 3

AD
C

Op
er

at
io

n

BV
C

√
√

√
−

−
−

√
√

√
−

−
−

√
√

√
−

−
−

√
√

−
−

−
−

√
√

−
−

−
−

√
√

−
−

−
−

√
√

√
−

−
√

√
√

−
−

−
−

√
√

√
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
0−

−

−
0−

−
−

−

0−
−

−
−

−

0
→

C

0
→

D

0
→

l

0
→

V

A
—

 M

X
—

 M

Y
—

 M

M
 —

 1
 →

 M

X
 —

 1
 →

 X

Y
 —

 1
 →

 Y

A
-M

-C
 →

 A
.C

A
V

M
 →

 A

A
V

M
 ,

M
7

→
 N

,
M

5
→

 V

PC
+

2
↓

P
↓

Na
m

e
De

sc
rip

tio
n

IN
S

T
R

U
C

T
IO

N
 C

O
D

E
S

N
ot

e
1:

 B
it

6
an

d
 7

 a
re

 tr
an

sf
er

re
d

 to
 th

e
st

at
us

 r
eg

is
te

r.
 I

f t
he

 r
es

ul
t o

f A
 A

N
D

 M
 is

 z
er

o,

th

en
 Z

 =
 1

;
ot

he
rw

is
e

 Z
 =

 0
.

N
ot

e
2:

 A

 B
R

K
 c

om
m

an
d

 c
an

no
t b

e
m

as
ke

d
 b

y
se

tt
in

g
I.

M
7

M
6

√
−

−
−

−
−

−
−

−
1

0
−

−
−

−
−

Im
m

ed
ia

te
Ze

ro
 P

ag
e

Ze
ro

 P
ag

e
X

A
bs

ol
ut

e
A

bs
ol

ut
e

X
A

bs
ol

ut
e

Y
(I

nd
ir

ec
t,

X)
(I

nd
ir

ec
t)

,Y

A
D

C
 #

O
pe

r
A

D
C

O

pe
r

A
D

C

O
pe

r,
X

A
D

C

O
pe

r
A

D
C

O

pe
r,

X
A

D
C

O

pe
r,

Y
A

D
C

O

pe
r,

X)
A

D
C

O

pe
r)

,Y

69 65 75 60 70 79 61 71

2 2 2 3 3 3 2 2

S
hi

ft
 l

ef
t

on
e

bi
t

(M
em

or
y

or
 A

cc
um

ul
at

or
)

B
ra

nc
h

on
 c

ar
ry

 c
le

ar

B
ra

nc
h

on
 r

es
ul

t
ze

ro

B
ra

nc
h

on
 c

ar
ry

 s
et

Te
st

 b
it

s
in

 m
em

or
y

w
it

h
ac

cu
m

ul
at

or

B
ra

nc
h

on
 r

es
ul

t
m

in
us

B
ra

nc
h

on
 r

es
ul

t
no

t
ze

ro

B
ra

nc
h

on
 r

es
ul

t
pl

us

Fo
rc

e
B

re
ak

B
ra

nc
h

on
 o

ve
rf

lo
w

 c
le

ar

“A
N

D
”

m
em

or
y

w
it

h
ac

cu
m

ul
at

or

A
dd

 m
em

or
y

to
ac

cu
m

ul
at

or
 w

it
h

ca
rr

y

B
ra

nc
h

on
 N

=
1

B
ra

nc
h

on
 Z

=
0

B
ra

nc
h

on
 N

=
0

B
ra

nc
h

on
 V

=
0

Fo
rc

ed
In

te
rr

up
t

B
ra

nc
h

on
 V

=
1

R
el

at
iv

e
B

VS
 O

pe
r

C
LC

Im
pl

ie
d

C
LD

Im
pl

ie
d

Im
pl

ie
d

C
LI

Im
m

ed
ia

te
Ze

ro
 P

ag
e

Ze
ro

 P
ag

e,
 X

A
bs

ol
ut

e
A

bs
ol

ut
e,

X
A

bs
ol

ut
e,

Y
(I

nd
ir

ec
t,

X)
(I

nd
ir

ec
t)

,Y

C
M

P
 #

O
pe

r
C

M
P

 O

pe
r

C
M

P

 O
pe

r,
X

C
M

P

 O
pe

r
C

M
P

 O

pe
r,

X
C

M
P

 O

pe
r,

Y
C

M
P

 (

O
pe

r,
X)

C
M

P

 (
O

pe
r)

,Y

Im
m

ed
ia

te
Ze

ro
 P

ag
e

A
bs

ol
ut

e

Im
m

ed
ia

te
Ze

ro
 P

ag
e

A
bs

ol
ut

e

C
PY

#O

pe
r

C
PY

O
pe

r
C

PY

O

pe
r

C
PX

#O

pe
r

C
PX

O
pe

r
C

PX

O

pe
r

Ze
ro

 P
ag

e
Ze

ro
 P

ag
e,

X
A

bs
ol

ut
e

A
bs

ol
ut

e,
X

Im
pl

ie
d

D
EX

D
EC

 O
pe

r
D

EC
 O

pe
r,

X
D

EC
 O

pe
r

D
EC

 O
pe

r,
X

B
ra

nc
h

on
 C

=
0

B
ra

nc
h

on
 C

=
1

B
ra

nc
h

on
 Z

=
1

103

LS
R

4A 46 56 4E 5E

Na
m

e
De

sc
rip

tio
n

Op
er

at
io

n
Ad

dr
es

si
ng

M
od

e

As
se

m
bl

y
La

ng
ua

ge
Fo

rm

HE
X

OP Co
de

No
.

By
te

s
“P

”
St

at
es

 R
eg

.
N

Z
C

I D
 V

Op
er

at
io

n
Ad

dr
es

si
ng

M
od

e

As
se

m
bl

y
La

ng
ua

ge
Fo

rm

HE
X

OP Co
de

No
.

By
te

s
“P

”
St

at
es

 R
eg

.
N

Z
C

I D
 V

EO
R

1 2 2 3 3

LS
R

A

LS
R

O

pe
r

LS
R

O

pe
r,

X
LS

R

O
pe

r
LS

R

O
pe

r,
X

A
cc

um
ul

at
or

Ze
ro

 P
ag

e
Ze

ro
 P

ag
e,

X
A

bs
ol

ut
e

A
bs

ol
ut

e,
X

Im
m

ed
ia

te
Ze

ro
 P

ag
e

Ze
ro

 P
ag

e,
X

A
bs

ol
ut

e
A

bs
ol

ut
e,

X
A

bs
ol

ut
e,

Y
(I

nd
ir

ec
t,

X)
(I

nd
ir

ec
t)

,Y

(S
ee

 F
ig

ur
e

1)

Ze
ro

 P
ag

e
Ze

ro
 P

ag
e,

X
A

bs
ol

ut
e

A
bs

ol
ut

e,
X

Im
pl

ie
d

Im
pl

ie
d

A
bs

ol
ut

e
In

di
re

ct

A
bs

ol
ut

e

Im
m

ed
ia

te
Ze

ro
 P

ag
e

Ze
ro

 P
ag

e,
X

A
bs

ol
ut

e
A

bs
ol

ut
e,

X
A

bs
ol

ut
e,

Y
(I

nd
ir

ec
t,

X)
(I

nd
ir

ec
t)

,Y

Im
m

ed
ia

te
Ze

ro
 P

ag
e

Ze
ro

 P
ag

e,
Y

A
bs

ol
ut

e
A

bs
ol

ut
e,

Y

Im
m

ed
ia

te
Ze

ro
 P

ag
e

Ze
ro

 P
ag

e,
X

A
bs

ol
ut

e
A

bs
ol

ut
e,

X

IN
C

IN
X

IN
Y

JM
P

JS
R

LD
A

LD
X

LD
Y

NO
P

OR
A

PH
A

PH
P

PL
A

PL
P

RO
L

RO
R

N
o

op
er

at
io

n

“O
R

”
m

em
or

y
w

it
h

ac
cu

m
ul

at
or

N
o

op
er

at
io

n
Im

pl
ie

d

Im
pl

ie
d

Im
pl

ie
d

Im
pl

ie
d

Im
pl

ie
d

(S
ee

 F
ig

ur
e

2)

(S
ee

 F
ig

ur
e

3)

EO
R

 #
O

pe
r

EO
R

O

pe
r

EO
R

O

pe
r,

X
EO

R

O
pe

r
EO

R

O
pe

r,
X

EO
R

O

pe
r,

Y
EO

R

(O
pe

r,
X)

EO
R

(O

pe
r)

,Y

IN
X

IN
Y

JM
P

O
pe

r
JM

P
(O

pe
r)

JS
R

 O
pe

r

O
R

A
 #

O
pe

r
O

R
A

O

pe
r

O
R

A

O
pe

r,
X

O
R

A

O
pe

r
O

R
A

O

pe
r,

X
O

R
A

O

pe
r,

Y
O

R
A

(O

pe
r,

X)
O

R
A

(O

pe
r)

,Y

09 05 15 00 10 19 01 11

2 2 2 3 3 3 2 2

48
PH

A

PH
P

PL
A

PL
P

R
O

L
A

R
O

L
O

pe
r

R
O

L
O

pe
r,

X
R

O
L

O
pe

r
R

O
L

O
pe

r,
X

A
cc

um
ul

at
or

Ze
ro

 P
ag

e
Ze

ro
 P

ag
e,

X
A

bs
ol

ut
e

A
bs

ol
ut

e,
X

R
O

R
 A

R
O

R
 O

pe
r

R
O

R
 O

pe
r,

X
R

O
R

 O
pe

r
R

O
R

 O
pe

r,
X

6A 66 76 6E 7E

1 2 2 3 31 2 2 3 3

2A 26 36 2E 3E

Im
m

ed
ia

te
Ze

ro
 P

ag
e

Ze
ro

 P
ag

e,
X

A
bs

ol
ut

e_
A

bs
ol

ut
e,

X
A

bs
ol

ut
e,

Y
(I

nd
ir

ec
t,

X)
(I

nd
ir

ec
t)

,Y

Pu
sh

 a
cc

um
ul

at
or

on
 s

ta
ck

Pu
sh

 p
ro

ce
ss

or
 s

ta
tu

s
on

 s
ta

ck

49 45 55 40 50 59 41 51

2 2 2 3 3 3 2 2 2 2 3 3

E6 F6 EE FE

2 2 2 3 3 3 2 2

A
9

A
5

B
5

A
0

B
D

B
9

A
1

B
1

A
2

A
6

B
6

A
E

B
E

2 2 2 3 3 2 2 2 3 3

A
0

A
4

B
4

A
C

B
C

R
ot

at
e

on
e

bi
t

ri
gh

t
(m

em
or

y
or

 a
cc

um
ul

at
or

)

A
cc

um
ul

at
or

Ze
ro

 P
ag

e
Ze

ro
 P

ag
e,

X
A

bs
ol

ut
e

A
bs

ol
ut

e,
X

IN
C

 O
pe

r
IN

C
 O

pe
r,

X
IN

C
 O

pe
r

IN
C

 O
pe

r,
X

LD
A

 #
O

pe
r

LD
A

O

pe
r

LD
A

O

pe
r,

X
LD

A

O
pe

r
LD

A

O
pe

r,
X

LD
A

O

pe
r,

Y
LD

A

(O
pe

r,
X)

LD
A

(O

pe
r)

,Y

LD
Y

#O
pe

r
LD

Y
 O

pe
r

LD
Y

 O
pe

r,
X

LD
Y

 O
pe

r
LD

Y
 O

pe
r,

X

LD
X

#O
pe

r
LD

X
 O

pe
r

LD
X

 O
pe

r,
Y

LD
X

 O
pe

r
LD

X
 O

pe
r,

Y

E8 C
8

4C 6C 20

1 1 3 3 3

N
O

P
EA

1 1 11

08 68 28

Na
m

e
De

sc
rip

tio
n

√
√

√
−

−
−

√
√

√
−

−
−

√
√

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

√
√

−
−

−
−

√
√

−
−

−
−

√
√

−
−

−
−

√
√

−
−

−
−

√
√

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

√
√

−
−

−
−

√
√

−
−

−
−

√
√

−
−

−
−

M
 →

X

M
 →

A

PC
+

2
↓

(P
C+

1)
 →

PC
L

(P
C+

2)
 →

PC
H

(P
C+

1)
 →

PC
L

(P
C+

2)
 →

PC
H

Y
 +

 1
 →

Y

X
 +

 1
 →

X

M
 +

 1
 →

M
A

 V
 M

 →
A

A
↓

P
↓

P
↑

IN
S

T
R

U
C

T
IO

N
 C

O
D

E
S

R
ot

at
e

on
e

bi
t

le
ft

(m
em

or
y

or
 a

cc
um

ul
at

or
)

A
↑

Y
M

→

A
 V

 M
A

→

Pu
ll

 p
ro

ce
ss

or
 s

ta
tu

s
fr

om
 s

ta
ck

Pu
sh

 a
cc

um
ul

at
or

fr
om

 s
ta

ck

S
hi

ft
 r

ig
ht

 o
ne

 b
ut

(m
em

or
y

or
 a

cc
um

ul
at

or
)

“E
xc

lu
si

ve
-O

r’
 m

em
or

y
w

it
h

ac
cu

m
ul

at
or

In
cr

em
en

t
m

em
or

y
by

 o
ne

In
cr

em
en

t
in

de
x

X
by

 o
ne

In
cr

em
en

t
in

de
x

Y
by

 o
ne

Ju
m

p
to

 n
ew

 l
oc

at
io

n

Ju
m

p
to

 n
ew

 l
oc

at
io

n
sa

vi
ng

 r
et

ur
n

ad
dr

es
s

Lo
ad

 a
cc

um
ul

at
or

w
it

h
m

em
or

y

Lo
ad

 i
nd

ex
 X

w
it

h
m

em
or

y

Lo
ad

 i
nd

ex
 Y

w
it

h
m

em
or

y

0√
√

−
−

−

Fr
om

 S
ta

ck

104

TX
A

8A 9A 98

TX
S

TY
A

Na
m

e
De

sc
rip

tio
n

Op
er

at
io

n
Ad

dr
es

si
ng

M
od

e

As
se

m
bl

y
La

ng
ua

ge
Fo

rm

HE
X

OP Co
de

No
.

By
te

s
“P

”
St

at
es

 R
eg

.
N

Z
C

I D
 V

As
se

m
bl

y
La

ng
ua

ge
Fo

rm

HE
X

OP Co
de

No
.

By
te

s

RT
I

RT
S

SB
C

SE
C

SE
D

SE
I

ST
A

ST
X

ST
Y

TA
X

TA
Y

TS
X

Tr
an

sf
er

 i
nd

ex
 X

to
 a

cc
um

ul
at

or

Tr
an

sf
er

 i
nd

ex
 X

 t
o

st
ac

k
po

in
te

r

1 1 1

TX
S

TY
A

TX
A

Im
pl

ie
d

Im
pl

ie
d

Im
pl

ie
d

Im
pl

ie
d

Im
pl

ie
d

R
TI

R
TS

40
1 1

E9 E5 F5 ED FD F9 E1 F1

2 2 2 3 3 3 2 2

38
1 1 1

S
EC S
ED

S
EI

Im
pl

ie
d

Im
pl

ie
d

Im
pl

ie
d

Im
m

ed
ia

te
Ze

ro
 P

ag
e

Ze
ro

 P
ag

e,
X

A
bs

ol
ut

e
A

bs
ol

ut
e,

X
A

bs
ol

ut
e,

Y
(I

nd
ir

ec
t,

X)
(I

nd
ir

ec
t)

,Y

Ze
ro

 P
ag

e
Ze

ro
 P

ag
e,

X
A

bs
ol

ut
e

A
bs

ol
ut

e,
X

A
bs

ol
ut

e,
Y

(I
nd

ir
ec

t,
X)

(I
nd

ir
ec

t)
,Y

Ze
ro

 P
ag

e
Ze

ro
 P

ag
e,

Y
A

bs
ol

ut
e

Ze
ro

 P
ag

e
Ze

ro
 P

ag
e,

X
A

bs
ol

ut
e

Im
pl

ie
d

Im
pl

ie
d

Im
pl

ie
d

TA
X

TA
Y

TS
X

A
A

B
A

2 2 3

S
B

C
 #

O
pe

r
S

B
C

 O

pe
r

S
B

C

 O
pe

r,
X

S
B

C

 O
pe

r,
Y

S
B

C

 (
O

pe
r,

X)
S

B
C

 (

O
pe

r)
,Y

S
B

C
 #

O
pe

r
S

B
C

 #
O

pe
r

S
TA

 O
pe

r
S

TA
 O

pe
r,

X
S

TA
 O

pe
r

S
TA

 O
pe

r,
X

S
TA

 O
pe

r,
Y

S
TA

 (
O

pe
r,

X)
S

TA
 (

O
pe

r)
,Y

S
TX

 O
pe

r
S

TX
 O

pe
r,

Y
S

TX
 O

pe
r

S
TY

 O
pe

r
S

TY
 O

pe
r,

X
S

TY
 O

pe
r

F8 78 85 95 80 90 99 81 91

2 2 3 3 3 2 2 2 2 3

86 96 8E 84 94 B
C

1 1 1

R
et

ur
n

fr
om

 i
nt

er
ru

pt

R
et

ur
n

fr
om

 s
ub

ro
ut

in
e

S
ub

tr
ac

t
m

em
or

y
fr

om
ac

cu
m

ul
at

or
 w

it
h

bo
rr

ow

S
et

 c
ar

ry
 f

la
g

S
et

 d
ec

im
al

 m
od

e

S
et

 i
nt

er
ru

pt
 d

is
ab

le
st

at
us

S
to

re
 a

cc
um

ul
at

or
in

 m
em

or
y

S
to

re
 i

nd
ex

 X
 i

n
m

em
or

y

S
to

re
 i

nd
ex

 Y
 i

n
m

em
or

y

Tr
an

sf
er

 s
ta

ck
 p

oi
nt

er
to

 i
nd

ex
 X

Tr
an

sf
er

 a
cc

um
ul

at
or

to
 i

nd
ex

 Y

Tr
an

sf
er

 i
nd

ex
 Y

to
 a

cc
um

ul
at

or

A
8

Tr
an

sf
er

 a
cc

um
ul

at
or

to
 i

nd
ex

 X

“P
”

St
at

es
 R

eg
.

N
Z

C
I D

 V

√
√

−
−

−
−

√
√

−
−

−
−

−
−

−
−

−
−

S
→

 X

A
→

 Y

A
→

 X

Y
→

 M

X
→

 M

A
→

 M

1
→

 l

1
→

 D

1
→

 C

A
-

M
 -

 C
 →

A

PC
↑,

 P
C

→
1

→
PC

P
↑

PC
 ↑

√
√

√
−

−
√

−
−

−
−

−
−

−
−

1−
−

−

−
−

−
−

1−

−
−

−
−

1−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

√
√

−
−

−
−

√
√

−
−

−
−

√
√

−
−

−
−

X
→

 A

X
→

 S

Y
→

 A

IN
S

T
R

U
C

T
IO

N
 C

O
D

E
S

Na
m

e
De

sc
rip

tio
n

Op
er

at
io

n
Ad

dr
es

si
ng

M
od

e

Fr
om

 S
ta

ck

00
—

B
R

K

01
—

O
R

A
—

(In
d

ir
ec

t.
X

I

02
—

N
O

P

03
—

N
O

R

04
—

N
O

R

05
—

O
R

A
—

Z
er

o
P

ag
e

06
—

A
S

L
—

Z
er

o
P

ag
e

07
—

N
O

P

08
—

P
H

P

09
—

O
R

A
—

Im
m

ed
ia

te

O
A

—
A

S
L

—
A

cc
um

ul
at

o
r

O
B

—
N

O
P

O
C

—
N

O
P

O
D

—
O

R
A

—
A

b
so

lu
te

O
E

--
A

S
L

--
A

b
so

lu
te

O
F

—
N

O
P

10
—

B
P

L

11
—

O
R

A
—

(In
d

ir
ec

t)
,

Y

12
—

N
O

P

13
—

N
O

P

14
—

N
O

R

15
—

O
R

A
—

Z
er

o
P

ag
e,

X

16
—

A
S

L
—

Z
er

o
P

ag
e.

X

17
—

N
O

R

18
—

C
LC

19
—

O
R

A
—

A
b

so
lu

te
,Y

IA
—

N
O

R

1B
—

N
O

P

1C
—

N
O

R

10
—

O
R

A
—

A
b

so
lu

te
,X

1E
—

A
S

L
—

A
b

so
lu

te
.X

1F
—

N
O

P

20
—

JS
R

21
—

A
N

D
—

(In
d

ir
ec

t,
X

)

22
—

N
O

R

23
—

N
O

P

24
—

B
IT

—
Z

er
o

P
ag

e

25
—

A
N

D
—

Z
er

o
P

ag
e

26
—

R
O

L
—

Z
er

o
P

ag
e

27
—

N
O

P

28
—

P
LP

29
—

A
N

D
—

Im
m

ed
ia

te

2A
—

R
O

L
—

A
cc

um
ul

at
o

r

2B
—

N
O

P

2C
—

B
IT

—
A

b
so

lu
te

2D
—

A
N

D
—

A
b

so
lu

te

2E
—

R
O

L
—

A
b

so
lu

te

2F
—

N
O

P

30
—

B
M

!

31
—

A
N

D
—

(In
d

ir
ec

t)
,

V

32
—

N
O

P

33
—

N
O

P

34
—

N
O

P

35
—

A
N

D
—

Z
er

o
P

ag
e,

X

36
—

R
O

L
—

Z
er

o
P

ag
e.

X

37
—

N
O

P

38
—

S
E

C

39
—

A
N

D
—

A
b

so
lu

te
,Y

3A
—

N
O

P

3B
—

N
O

P

3C
—

N
O

P

3D
—

A
N

D
—

A
b

so
lu

te
,X

3E
—

R
O

L
—

A
b

so
lu

te
,X

3F
—

N
O

P

40
—

R
T

I

41
—

E
O

R
—

In
d

ir
ec

t.
 X

42
—

N
O

P

43
—

N
O

P

44
—

N
O

R

45
—

E
O

R
—

Z
er

o
P

ag
e

46
—

LS
R

—
Z

er
o

P
ag

e

47
—

N
O

P

48
—

P
H

A

49
—

E
O

R
—

Im
m

ed
ia

te

4A
—

LS
R

—
A

cc
um

ul
at

o
r

4B
—

N
O

R

4C
—

JM
P

—
A

b
so

lu
te

4D
—

E
O

R
—

A
b

so
lu

te

4E
—

LS
R

—
A

b
so

lu
te

4F
—

M
O

P

50
—

B
V

C

51
—

E
O

R
In

d
ir

ec
t,

 Y

52
—

N
O

P

53
—

N
O

P

54
—

N
O

P

55
—

E
O

R
—

Z
er

o
P

ag
e,

X

56
—

LS
R

—
Z

er
o

P
ag

e,
X

57
—

N
O

P

58
—

C
LI

59
—

F
O

R
--

A
b

so
lu

te
,Y

5A
—

N
O

P

5B
—

N
O

P

5C
—

N
O

P

50
—

E
O

R
—

A
b

so
lu

te
,X

5E
—

LS
R

—
A

b
so

lu
te

,X

S
F

—
N

O
P

60
—

R
T

S

61
—

A
D

C
—

In
d

ir
ec

t,
 X

62
—

N
O

R

63
—

N
O

P

64
—

N
O

R

65
—

A
D

C
—

Z
er

o
P

ag
e

66
—

R
O

R
—

Z
er

o
P

ag
e

67
—

N
O

P

68
—

P
LA

69
—

A
D

C
—

Im
m

ed
ia

te

6A
—

R
O

R
—

A
cc

um
ul

at
o

r

6B
—

N
O

P

6C
—

JM
P

—
In

d
ir

ec
t

6D
—

A
D

C
—

A
b

so
lu

te

6E
—

R
O

R
—

A
b

so
lu

te

6F
—

N
O

P

70
—

B
V

S

71
—

A
D

C
—

(In
d

ir
ec

t)
,

Y

72
—

N
O

P

73
—

M
O

P

74
—

N
O

P

75
—

A
D

C
—

Z
er

o
P

ag
e,

X

76
—

R
O

R
—

Z
er

o
P

ag
e.

X

77
—

N
O

P

78
—

S
E

I

79
—

A
D

C
—

A
b

so
lu

te
,Y

7A
—

N
O

P

7B
—

N
O

P

7C
—

N
O

P

7D
—

A
D

C
—

A
b

so
lu

te
,X

N
O

P

7E
—

80
8

—
A

b
so

lu
te

,X
N

O
P

7F
—

N
O

P

80
—

N
O

R

81
—

S
T

A
—

(In
d

ir
ec

t,
X

i

82
—

N
O

P

83
—

N
O

P

84
—

S
T

Y
—

Z
er

o
P

ag
e

85
—

S
T

A
—

Z
er

o
P

ag
e

86
—

S
T

X
—

Z
er

o
P

ag
e

87
—

N
O

P

88
—

D
E

Y

89
—

N
O

P

8A
—

T
X

A

88
—

N
O

P

8C
—

S
T

Y
—

A
b

so
lu

te

8D
—

S
T

A
—

A
b

so
lu

te

B
E

—
S

T
X

—
A

b
so

lu
te

8F
—

N
O

P

90
—

B
C

C

91
—

S
T

A
—

(In
d

ir
ec

t)
,

Y

92
—

N
O

P

93
—

N
O

R

94
—

S
T

Y
—

Z
er

o
P

ag
e.

X

95
—

S
T

A
—

Z
er

o
P

ag
e,

X

96
—

S
T

X
—

Z
er

o
P

ag
e,

Y

97
—

N
O

P

98
—

T
V

A

99
—

S
T

A
—

A
b

so
lu

te
,Y

9A
—

T
X

S

9B
—

M
O

P

9C
—

N
O

P

9D
—

S
T

A
—

A
b

so
lu

te
,X

9E
—

N
O

P

9F
—

N
O

P

A
O

—
LD

Y
—

Im
m

ed
ia

te

A
l

—
LD

A
—

(In
d

ir
ec

t,
X

I

A
2

—
LO

X
—

Im
m

ed
ia

te

A
3

—
N

O
R

A
4

—
LD

Y
—

Z
er

o
P

ag
e

A
S

—
LD

A
—

Z
er

o
P

ag
e

A
6

—
LD

X
—

Z
er

o
P

ag
e

A
l

—
N

O
P

A
8

—
T

A
Y

A
9

—
LD

A
—

Im
m

ed
ia

te

A
A

—
T

A
X

A
B

—
N

O
P

A
C

—
LD

Y
—

A
b

so
lu

te

A
D

—
A

b
so

lu
te

A
E

—
LD

X
—

A
b

so
lu

te

A
F

—
N

O
R

B
O

—
B

C
S

81
—

LD
A

—
(In

d
ir

ec
t)

,
Y

B
2

—
N

O
P

B
3

—
N

O
P

84
—

LD
Y

—
Z

er
o

P
ag

e,
X

85
—

LD
A

—
Z

er
o

P
ag

e,
X

B
6

—
LO

X
—

Z
er

o
P

ag
e,

Y

87
—

N
O

P

B
8

—
C

LV

89
—

LD
A

—
A

b
so

lu
te

.Y

B
A

—
T

S
X

B
B

—
N

O
P

B
C

—
LD

Y
—

A
b

so
lu

te
.X

B
D

—
LD

A
—

A
b

so
lu

te
,X

B
E

—
LO

X
—

A
b

so
lu

te
,Y

B
F

—
N

O
P

C
O

—
C

P
Y

—
Im

m
ed

ia
te

C
1

—
C

M
P

—
(In

d
ir

ec
t,

 X

C
2

—
N

O
P

C
3

—
N

O
P

C
4

—
C

P
Y

—
Z

er
o

P
ag

e

C
5

—
C

M
P

—
Z

er
o

P
ag

e

C
6

—
D

E
C

—
Z

er
o

P
ag

e

C
7

—
N

O
P

C
8

—
IN

Y

C
9

—
C

M
P

—
Im

m
ed

ia
te

C
A

—
D

E
X

C
B

—
M

O
P

C
C

—
C

P
Y

—
A

b
so

lu
te

C
D

—
C

M
P

—
A

b
so

lu
te

C
E

—
D

E
C

D
E

C
—

A
b

so
lu

te

C
F

—
N

O
P

D
O

—
B

N
E

D
1

—
C

M
P

—
(In

d
ir

ec
t)

,
V

D
2

—
N

O
P

D
3

—
N

O
R

D
4

—
N

O
P

05
—

C
M

P
—

Z
er

o
P

ag
e.

X

D
6

—
D

E
C

—
Z

er
o

P
ag

e,
X

07
—

N
O

R

08
—

C
LD

D
9

—
C

M
P

—
A

b
so

lu
te

.Y

D
A

—
N

O
P

D
8

—
N

O
R

D
C

—
M

O
P

D
O

—
C

C
M

P
—

A
b

so
lu

te
X

D
E

—
D

E
C

—
A

b
so

lu
te

,X

O
F

—
N

O
P

E
0

—
C

P
X

—
Im

m
ed

ia
te

E
l

—
S

B
C

—
(In

d
ir

ec
t,

X
)

E
2

—
N

O
P

E
3

—
N

O
P

E
4

—
C

P
X

—
Z

er
o

P
ag

e

E
5

—
S

B
C

—
Z

er
o

P
ag

e

E
6

—
IN

C
—

Z
er

o
P

ag
e

E
7

—
N

O
P

E
B

—
IN

X

E
9

—
S

B
C

—
Im

m
ed

ia
te

E
A

—
N

O
P

E
B

—
N

O
P

E
C

—
C

P
X

—
A

b
so

lu
te

E
D

—
S

B
C

—
A

b
so

lu
te

E
E

—
IN

C
—

A
b

so
lu

te

E
E

—
N

O
P

F
O

—
B

M

F
1

—
S

B
C

—
(In

d
ir

ec
t)

,
Y

F
2

—
N

O
P

F
3

—
N

O
R

F
4

—
N

O
P

F
5

—
S

B
C

—
Z

er
o

P
ag

e,
X

F
6

—
IN

C
—

Z
er

o
P

ag
e.

X

F
7

—
N

O
P

F
8

—
S

E
D

F
9

—
S

B
C

—
A

b
so

lu
te

.Y

F
A

—
N

O
P

F
B

—
N

O
P

F
C

—
N

O
P

F
D

—
S

B
C

—
A

b
so

lu
te

.X

F
E

—
IN

C
—

A
b

so
lu

te
,X

F
F

—
N

O
P

H
E

X
O

P
E

R
A

T
IO

N
C

O
D

E
S

106

Getting Started with Your APPLE II Board
APPLE II Switching Power Supply
Interfacing with the Home TV
Simple Serial Output

Interfacing the APPLE
 Signals, Loading, Pin Connections

Memory
 Options, Expansion, Map, Address

System Timing
Schematics

APPLE II HARDWARE

1.
2.
3.
4.

5.

6.

7.
8.

‑

‑

107

GETTING STARTED WITH YOUR APPLE II BOARD

INTRODUCTION

ITEMS YOU WILL NEED:

Your APPLE II board comes completely assembled and thoroughly tested.
You should have received the following:

a.

b.

c.

d.

e.

f.

l ea.

l ea.

l ea.

l ea.

l ea.

2 ea.

APPLE II P.C. Board complete with
specified RAM memory.

d.c. power connector with cable.

2" speaker with cable.

Preliminary Manual

Demonstration cassette tapes. (For 4K: 1 cassette (2 programs);
l6K or greater: 3 cassettes.
l6 pin headers plugged into locations A7
and Jl4.

In addition you will need:

g. A color TV set (or B & W) equipped with a direct
video input connector for best performance or a com-
mercially available RF modulator such as a “Pixi-verter”tm
Higher channel (7-l3) modulators generally provide
better system performance than lower channel modulators
(2-6).

h. The following power supplies (NOTE: current ratings
do not include any capacity for peripheral boards.):

l. +l2 Volts with the following current capacity!

 a. For 4K or l6K systems - 35ØmA.

 b. For 8K, 2ØK or 32K - 55ØmA.

 c. For 12K, 24K, 36K or 48K - 85ØmA.

2. +5 Volts at l.6 amps

3. -5 Volts at lØmA.

4. OPTIONAL: If -l2 Volts is reouired by your keyboard.
 (If using an APPLE II supplied keyboard, you will
 need -12V at 5ØmA.)

i.

j.

An audio cassette recorder such as a Panasonic model
RQ-3O9 DS which is used to load and save programs.

An ASCII encoded keyboard equipped with a "reset"
switch.

k. Cable for the following:

l. Keyboard to APPLE II P.C.B.

2. Video out 75 ohm cable to TV or modulator

3. Cassette to APPLE II P.C.B. (l or 2)

Optionally you may desire:

l. Game paddles or pots with cables to APPLE II Game I/O
 connector. (Several demo programs use PDL(0) and
 "Pong" also uses PDL(l).

m. Case to hold all the above

Final Assembly Steps

Using detailed information on pin functions in hardware
section of manual, connect power supplies to d.c. cable
assembly. Use both ground wires to miminize resistance.
With cable assembly disconnected from APPLE II mother
board, turn on power supplies and verify voltages on
connector pins. Improper supply connections such as reverse
polarity can severely damage your APPLE II.

Connect keyboard to APPLE II by unplugging leader in
location A7 and wiring keyboard cable to it, then plug
back into APPLE II P.C.B.

Plug in speaker cable.

Optionally connect one or two game paddles using leader
supplied in socket located at J14.

Connect video cable.

Connect cable from cassette monitor output to APPLE II
cassette input.

Check to see that APPLE II board is not contacting any
conducting surface.

With power supplies turned off, plug in power connector
to mother board then recheck all cableing.

108

l.

2.

3.

4.

5.

6.

7.

8.

POWER UP

l. Turn power on. If power supplies overload, immediately turn off
and recheck power cable wiring. Verify operating supply voltages
are within +3% of nominal value.

2. You should now have random video display. If not check video
level pot on mother board, full clockwise is maximum video out-
put. Also check video cables for opens and shorts. Check
modulator if you are using one.

3. Press reset button. Speaker should beep and a "*" prompt
character with a blinking cursor should appear in lower
left on screen.

4. Press "esc" button, release and type a "@" (shift-P) to
clear screen.. You may now try "Monitor" commands if you
wish. See details in "Monitor" software section.

RUNNING BASIC

l. Turn power on; press reset button; type "control B" and press
return button. A ">" prompt character should appear on screen
indicating that you are now in BASIC.

2. Load one of the supplied demonstration cassettes into recorder.
Set recorder level to approximately 5 and start recorder. Type
"LOAD" and return. First beep indicates that APPLE II has found
beginning of program; second indicates end of program followed
by ">" character on screen. If error occurs on loading, try a
different demo tape or try changing cassette volume level.

3. Type RUN and carriage return to execute demonstration program.
 Listings of these are included in the last section of this
 manual.

109

-

110

THE APPLE II SWITCHING POWER SUPPLY

Switching power supplies generally have both advantages and peculiarities
not generally found in conventional power supplies. The Apple II user
is urged to review this section.

Your Apple II is equipped with an AC line
voltage filter and a three wire AC line cord.
It is important to make sure that the third
wire is returned to earth ground. Use a con-
tinuity checker or ohmmeter to ensure that
the third wire is actually returned to earth.
Continuity should be checked for between the
power supply case and an available water pipe
for example. The line filter, which is of a
type approved by domestic (U.L. CSA) and
international (VDE) agencies must be returned
to earth to function properly and to avoid
potential shock hazards.

 The APPLE II power supply is of the "flyback" switching type. In
this system, the AC line is rectified directly, "chopped up" by a high
frequency oscillator and coupled through a small transformer to the
diodes, filters, etc., and results in four low voltage DC supplies to
run APPLE II. The transformer isolates the DC supplies from the line
and is provided with several shields to prevent "hash" from being
coupled into the logic or peripherals. In the "flyback" system, the
energy transferred through from the AC line side to DC supply side is
stored in the transformer's inductance on one-half of the operating
cycle, then transferred to the output filter capacitors on the second
half of the operating cycle. Similar systems are used in TV sets to
provide horizontal deflection and the high voltages to run the CRT.

 Regulation of the DC voltages is accomplished by controlling the
frequency at which the converter operates; the greater the output power
needed, the lower the frequency of the converter. If the converter is
overloaded, the operating frequency will drop into the audible range
with squeels and squawks warning the user that something is wrong.

 All DC outputs are regulated at the same time and one of the four
outputs (the +5 volt supply) is compared to a reference voltage with
the difference error fed to a feedback loop to assist the oscillator
in running at the needed frequency. Since all DC outputs are regulated
together, their voltages will reflect to some extent unequal loadings.

 For example; if the +5 supply is loaded very heavily, then all
other supply voltages will increase in voltage slightly; conversely,
very light loading on the +5 supply and heavy loading on the +l2
supply will cause both it and the others to sag lightly. If precision
reference voltages are needed for peripheral applications, they should
be provided for in the peripheral design.

 In general, the APPLE II design is conservative with respect to
component ratings and operating termperatures. An over-voltage crowbar
shutdown system and an auxilliary control feedback loop are provided
to ensure that even very unlikely failure modes will not cause damage to
the APPLE II computer system. The over-voltage protection references to
the DC output voltages only. The AC line voltage input must be within
the specified limits, i.e., 107V to 132V.

 Under no circumstances, should more
 than 140 VAC be applied to the input
 of the power supply. Permanent damage
 will result.

 Since the output voltages are controlled by changing the operating
frequency of the converter, and since that frequency has an upper limit
determined by the switching speed of power transistors, there then must
be a minimum load on the supply; the Apple II board with minimum memory
(4K) is well above that minimum load. However, with the board discon-
nected, there is no load on the supply, and the internal over-voltage
protection circuitry causes the supply to turn off. A 9 watt load
distributed roughly 5O-5O between the +5 and +12 supply is the nominal
minimum load.

Nominal load current ratios are: The +12V supply load is ½ that of the +5V.
 The - 5V supply load is 1/l0 that of the +5V.
 The -12V supply load is 1/l0 that of the +5V.

 The supply voltages are +5.0 + 0.15 volts, +11.8 + 0.5 volts, -12.0 + 1V,
-5.2 + O.5 volts. The tolerances are greatly reduced when the loads are
close to nominal.

 The Apple II power supply will power the Apple II board and all present
and forthcoming plug-in cards, we recommend the use of low power TTL, CMOS,
etc. so that the total power drawn is within the thermal limits of the entire
system. In particular, the user should keep the total power drawn by any
one card to less than l.5 watts, and the total current drawn by all the cards
together within the following limits:

 + 12V - use no more than 250 mA
 + 5V - use no more than 500 mA
 - 5V - use no more than 200 mA
 - 12V - use no more than 200 mA

 The power supply is allowed to run indefinetly under short circuit
or open circuit conditions.

 CAUTION: There are dangerous high
 voltages inside the power supply
 case. Much of the internal circuitry
 is NOT isolated from the power line,
 and special equipment is needed for
 service. NO REPAIR BY THE USER IS
 ALLOWED.

111

 NOTES ON INTERFACING WITH THE HOME TV

 Accessories are available to aid the user in connecting the Apple II
system to a home color TV with a minimum of trouble. These units are called
"RF Modulators" and they generate a radio frequency signal corresponding to
the carrier of one or two of the lower VHF television bands; 61.25 MHz
(channel 3) or 67.25 MHz (channel 4). This RF signal is then modulated with
the composite video signal generated by the Apple II.

 Users report success with the following RF modulators:

 the "PixieVerter" (a kit)
 ATV Research
 13th and Broadway
 Dakota City, Nebraska 68731

 the "TV-1" (a kit)
 UHF Associates
 6O37 Haviland Ave.
 Whittier, CA 9O6O1

 the "Sup-r-Mod" by (assembled & tested)
 M&R Enterprises
 P.O. Box 1O11
 Sunnyvale, CA 94O88

 the RF Modulator (a P.C. board)
 Electronics Systems
 P.O. Box 212
 Burlingame, CA 94O1O

Most of the above are available through local computer stores.

 The Apple II owner who wishes to use one of these RF Modulators should
read the following notes carefully.

 All these modulators have a free running transistor oscillator. The
M&R Enterprises unit is pre-tuned to Channel 4. The PixieVerter and the
TV-1 have tuning by means of a jumper on the P.C. board and a small trimmer
capacitor. All these units have a residual FM which may cause trouble if
the TV set in use has a IF pass band with excessive ripple. The unit from
M&R has the least residual FM.

 All the units except the M&R unit are kits to be built and tuned by
the customer. All the kits are incomplete to some extent. The unit from
Electronics Systems is just a printed circuit board with assembly instructions.
The kits from UHF Associates and ATV do not have an RF cable or a shielded
box or a balun transformer, or an antenna switch. The M&R unit is complete.

 Some cautions are in order. The Apple II, by virtue of its color graphics
capability, operates the TV set in a linear mode rather than the 100% contrast
mode satisfactory for displaying text. For this reason, radio frequency inter-
ference (RFI) generated by a computer (or peripherals) will beat with the

 112

carrier of the RF modulator to produce faint spurious background patterns
(called "worms") This RFI "trash" must be of quite a low level if worms
are to be prevented. In fact, these spurious beats must be 40 to 50db
below the signal level to reduce worms to an acceptable level. When it is
remembered that only 2 to 6 mV (across 300Ω) is presented to the VHF input
of the TV set, then stray RFI getting into the TV must be less than 50µV
to obtain a clean picture. Therefore we recommend that a good, co-ax
cable be used to carry the signal from any modulator to the TV set, such
as RG/59u (with copper shield), Belden #8241 or an equivalent miniature
type such as Belden #8218. We also recommend that the RF modulator been
enclosed in a tight metal box (an unpainted die cast aluminum box such as
Pomona #2428). Even with these precautions, some trouble may be encountered
with worms, and can be greatly helped by threading the coax cable conn-
ecting the modulator to the TV set repeatedly through a Ferrite toroid core
Apple Computer supplies these cores in a kit, along with a 4 circuit
connector/cable assembly to match the auxilliary video connector found on
the Apple II board. This kit has order number A2M010X. The M&R "Sup-r-Mod"
is supplied with a coax cable and toroids.

 Any computer containing fast switching logic and high frequency clocks
will radiate some radio frequency energy. Apple II is equipped with a
good line filter and many other precautions have been taken to minimize
radiated energy. The user is urged not to connect "antennas" to this
computer; wires strung about carrying clocks and/data will act as antennas,
and subsequent radiated energy may prove to be a nuisance.

 Another caution concerns possible long term effects on the TV picture
tube. Most home TV sets have "Brightness" and "Contrast" controls with a
very wide range of adjustment. When an un-changing picture is displayed
with high brightness for a long period ,a faint discoloration of the
TV CRT may occur as an inverse pattern observable with the TV set
turned off. This condition may be avoided by keeping the "Brightness"
turned down slightly and "Contrast" moderate.

 113

 The Apple II is equipped with a l6 pin DIP socket most frequently
used to connect potentiometers, switches, etc. to the computer for
paddle control and other game applications. This socket, located at
J-14, has outputs available as well. With an appropriate machine
language program, these output lines may be used to serialize data in
a format suitable for a teletype. A suitable interface circuit must
be built since the outputs are merely LSTTL and won't run a teletype
without help. Several interface circuits are discussed below and the
user may pick the one best suited to his needs.

The ASR - 33 Teletype

 The ASR - 33 Teletype of recent vintage has a transistor circuit
to drive its solenoids. This circuit is quite easy to interface to,
since it is provided with its own power supply. (Figure la) It can
be set up for a 2OmA current loop and interfaced as follows (whether
or not the teletype is strapped for full duplex or half duplex oper-
ation):
 a) The yellow wire and purple wire should both go to
 terminal 9 of Terminal Strip X. If the purple wire
 is going to terminal 8, then remove it and relocate
 it at terminal 9. This is necessary to change from
 the 6OmA current loop to the 2OmA current loop.

 b) Above Terminal Strip X is a connector socket identi-
 fied as "2". Pin 8 is the input line + or high; Pin
 7 is the input line - or low. This connector mates
 with a Molex receptacle model l375 #Ø3-Ø9-2l5l or
 #O3-O9-2l53. Recommended terminals are Molex #Ø2-Ø9-
 2136. An alternate connection method is via spade lugs
 to Terminal Strip X, terminal 7 (the + input line) and
 6 (the - input line).

 c) The following circuit can be built on a 16 pin DIP
 component carrier and then plugged into the Apple's
 l6 pin socket found at J-l4: (The junction of the
 3.3k resistor and the transistor base lead is float-
 ing). Pins 16 and 9 are used as tie points as they
 are unconnected on the Apple board. (Figure la).

114

A SIMPLE SERIAL OUTPUT

Entering Machine Language Program

 l. Power up Apple II
 2. Depress and release the "RESET" key. An asterick
 and flashing cursor should appear on the left hand
 side of the screen below the random text matrix.
 3. Now type in the data from columns one, two and three
 for each line from $37Ø to Ø3E9. For example, type in
 "37Ø: A9 82" and then depress and release the "RETURN"
 key. Then repeat this procedure for the data at $372
 and on until you complete entering the program.

Executing this Program

 l. From BASIC a CALL 88Ø ($37Ø) will start the execution of
 this program. It will use the teletype or suitable 8Ø
 column printer as the primary output device.

115

The "RS - 232 Interface"
 For this interface to be legitimate, it is necessary to twice invert
the signal appearing at J-14 pin 15 and have it swing more than 5 volts
both above and below ground. The following circuit does that but requires
that both +12 and -12 supplies be used. (Figure 2) Snipping off pins
on the DIP-component carrier will allow the spare terminals to be used for
tie points. The output ground connects to pin 7 of the DB-25 connector.
The signal output connects to pin 3 of the DB-25 connector. The "protective"
ground wire normally found on pin 1 of the DB-25 connector may be connected
to the Apple's base plate if desired. Placing a #4 lug under one of the
four power supply mounting screws is perhaps the simplest method. The +12
volt supply is easily found on the auxiliary Video connector (see Figure S-11
or Figure 7 of the manual). The -12 volt supply may be found at pin 33 of
the peripheral connectors (see Figure 4) or at the power supply connector
(see Figure 5 of the manual).

A Serial Out Machine Center Language Program
 Once the appropriate circuit has been selected and constructed a machine
language program is needed to drive the circuit. Figure 3 lists such a tele-
type output machine language routine. It can be used in conjunction with an
Integer BASIC program that doesn't require page $3ØØ hex of memory. This
program resides in memory from $37Ø to $3E9. Columns three and four of the
listing show the op-code used. To enter this program into the Apple II the
following procedure is followed:

2. PR#Ø will inactivate the printer transfering control
 back to the Video monitor as the primary output device.

3. In Monitor mode $37ØG activates the printer and hitting
 the "RESET" key exits the program.

Saving the Machine Language Program

 After the machine language program has been entered and checked for
accuracy it should, for convenience, be saved on tape - that is unless
you prefer to enter it by keyboard every time you want to use it.

 The way it is saved is as follows:
 1. Insert a blank program cassette into the tape
 recorder and rewind it.

 2. Hit the "RESET" key. The system should move
 into Monitor mode. An asterick "*" and flash-
 ing cursor should appear on the left-hand side
 of the screen.

 3. Type in "37Ø.Ø3E9W 37Ø.Ø3E9W".

 4. Start the tape recorder in record mode and depress
 the "RETURN" key.

 5. When the program has been written to tape, the asterick
 and flashing cursor will reappear.

The Program

 After entering, checking and saving the program perform the following
procedure to get a feeling of how the program is used:
 1. Bc (control B) into BASIC

 2. Turn the teletype (printer on)

 3. Type in the following
 lØ CALL 88Ø
 l5 PRINT "ABCD...XYZØl123456789"
 2Ø PR#Ø
 25 END

 4. Type in RUN and hit the "RETURN" key. The
 text in line l5 should be printed on the
 teletype and control is returned to the key-
 board and Video monitor

116

117

 Line lØ activates the teletype machine routine and all "PRINT" state-
ments following it will be printed to the teletype until a PR#Ø statement is
encountered. Then the text in line l5 will appear on the teletype's output.
Line 2Ø deactivates the printer and the program ends on line 25.

Conclusion
 With the circuits and machine language program described in this paper
the user may develop a relatively simple serial output interface to an ASR-3
or RS-232 compatible printers. This circuit can be activated through BASIC
or monitor modes. And is a valuable addition to any users program library.

FIGURE 2

118

I

8 9

3.
3K

- +

(a) (b)
FIGURE 1 ASR-33

+

-

RESISTORS ARE I/4 WATT CARBON

3.
3K

OUTPUT TO TELETYPE

470

-I2 (JUMPERED TO -I2 SUPPLY)

PIN 8
J-I4

3.3K

2N3904

2.2K

J-I4
PIN I5

2N3906

3.3K

+I2 (JUMPERED TO +I2 SUPPLY)

J-I4

PIN I5

3.3K

+5V

3.3K
2N3906 (OR EQUIV.)

I50

EBC

I6
I5

15
0

OUTPUT (+)
OUTPUT (-)

RS-232

119

FIGURE 3a

 TELETYPE DRIVER ROUTINES

3:42 P.M., 11/18/1977 PAGE: 1

 1 TITLE ‘TELETYPE DRIVER ROUTINES’

 2 *************************

 3 * *

 4 * TTYDRIVER: *

 5 * TELETYPE OUTPUT *

 6 * ROUTINE FOR 72 *

 7 * COLUMN PRINT WITH *

 8 * BASIC LIST *

 9 * *

 10 * COPYRIGHT 1977 BY: *

 11 * APPLE COMPUTER INC. *

 12 * 11/18/77 *

 13 * *

 14 * R. WIGGINTON *

 15 * S. WOZNIAK *

 16 * *

 17 *************************

 18 WNDWDTH EQU $21 ;FOR APPLE-II

 19 CH EQU $24 ;CURSOR HORIZ.

 20 CSWL EQU $36 ;CHAR. OUT SWITCH

 21 YSAVE EQU $778

 22 COLCNT EQU $7F8 ;COLUMN COUNT LOC.

 23 MARK EQU $CO58

 24 SPACE EQU $CO59

 25 WAIT EQU $FCA8

 26 ORG $370

***WARNING: OPERAND OVERFLOW IN LINE 27

0370: A9 82 27 TTINIT: LDA #TTOUT

0372: 85 36 28 STA CSWL ;POINT TO TTY ROUTINES

0374: A9 03 29 LDA #TTOUT/256 ;HIGH BYTE

0376: 85 37 30 STA CSWL+1

0378: A9 48 31 LDA #72 ;SET WINDOW WIDTH

037A: 85 21 32 STA WNDWDTH ;TO NUMBER COLUMNS ONT

037C: A5 24 33 LDA CH

037E: 8D F8 34 STA COLCNT ;WHERE WE ARE NOW.

0381: 60 35 RTS

0382: 48 36 TTOUT: PHA ;SAVE TWICE

0383: 48 37 PHA ;ON STACK.

0384: AD F8 38 TTOUT2: LDA COLCNT ;CHECK FOR A TAB.

0387: C5 24 39 CMP CH

0389: 68 40 PLA ;RESTORE OUTPUT CHAR.

038A: BO 03 41 BCS TESTCTRL ;IF C SET, NO TAB

038C: 48 42 PHA

038D: A9 AO 43 LDA #$A0 ;PRINT A SPACE.

038F: 2C CO 44 TESTCTRL: BIT RTS1 ;TRICK TO DETERMINE

0392: FO 03 45 BEQ PRNTIT ;IF CONTROL CHAR.

0394: EE F8 46 INC COLCNT ;IF NOT, ADD ONE TO CM

0397: 20 C1 47 PRNTIT: JSR DOCHAR ;PRINT THE CHAR ON TTY

039A: 68 48 PLA ;RESTORE CHAR

0393: 48 49 PHA ;AND PUT BACK ON STAC

039C: 90 E6 50 BCC TTOUT2 ;DO MORE SPACES FOR TA

039E: 49 OD 51 EOR #$OD ;CHECK FOR CAR RET.

03A0: OA 52 ASL A ;ELIM PARITY

03A1: DO OD 53 BNE FINISH ;IF NOT CR, DONE.

********SUCCESSFUL ASSEMBLY: NO ERRORS

FIGURE 3b

STA COLCNT ;CLEAR COLUMN COUNT

LDA #$8A ;NOW DO LINE FEED

JSR DOCHAR

LDA #$53

JSR WAIT ;200MSEC DELAY FOR LIB

LDA COLCNT ;CHECK IF IN MARGIN

3E0 SETCH ;FOR CR, RESET CH

S3C WVDWDTH ;IF SO, CARRY SET.

SSC #$F7

BCC RETURN

ADC #$1F ;ADJUST CH

STA CH

PLA

RTS ;RETURN TO CALLER

STY YSAVE

PHP ;SAVE STATUS.

LDY #$OB ;11 BITS (1 START, XXXXXXXXXXXXXX

CLC ;BEGIN 7ITH SPACE (STXXXXXXX

PHA ;SAVE A REG AND SET FOR

BCS MARKOUT

LDA SPACE ;SEND A SPACE

BCC TTOUT4

LDA MARK ;SEND A MARK

LDA #$D7 ;DELAY 9.091 MSEC FOR

PHA ;110 BAUD

LDA #$20

LSR A

BCC DLY2

PLA

SBC #$01

3NE DLY1

PLA

ROR A ;NEXT BIT (STOP BITS R

DEY LOOP 11 BITS.

BNE TTOUT3

LDY YSAVE ;RESTORE Y-REG.

PLP ;RESTORE STATUS

RTS ;RETURN

 TELETYPE DRIVER ROUTINES

3:42 P.M., 11/18/1977 PAGE: 2

03A3: 8D F8 07 54

03A6: A9 8A 55

03A8: 20 C1 03 56

03AB: A9 58 57

03AD: 20 A8 FC 58

03B0: AD F8 07 59 FINISH:

03B3: F0 08 60

03B5: E5 21 61

03B7: E9 F7 62

03B9: 90 04 63

03BB: 69 1F 64

03BD: 85 24 65 SETCH:

03BF: 68 66 RETURN:

03C0: 60 67 RTS1:

 68 * HERE IS THE TELETYPE PRINT A CHARACTER ROUTINE:

03C1: 8C 78 07 69 DOCHAR:

03C4: 08 70

03C5: A0 0B 71

03C7: 18 72

03C8: 48 73 TTOUT3:

03C9: B0 05 74

03CB: AD 59 C0 75

03CE: 90 03 76

03D0: AD 58 C0 77 MARKOUT:

03D3: A9 D7 78 TTOUT4:

03D5: 48 79 DLY1:

03D6: A9 20 80

03D8: 4A 81 DLY2:

03DB: 90 FD 82

03DB: 68 83

03DC: E9 01 84

03DE: D0 F5 85

03E0: 68 86

03E1: 6A 87

03E2: 88 88

03E3: D0 E3 89

03E5: AC 78 07 90

03E8: 28 91

03E9: 60 92

120

FIGURE 3c

CROSS-REFERNCE:TELETYPE DRIVER ROUTINES

CH 0024 0033 0039 0065

COLCNT 0718 0034 0038 0046 0054 0059

C5WL 0036 0028 0030

DLYI 0305 0085

DLY2 0308 0082

DOCHAR 0301 0047 0056

FINISH 0330 0053

MARK CO58 0077

MARKOUT 0300 0074

PRNTIT 0397 0045

RETURN 038F 0063

RTS1 0300 0044

SETCH 0330 0060

SPACE CO59 0075

TESTCTRL 033F 0041

TTINIT 0370

TTOUT 0332 0027 0029

TTOUT2 0384 0050

TTOUT3 03C8 0089

TTOUT4 0303 0076

WAIT FCAB 0058

WNDWDTH 0021 0032 0061

YSAVE 0778 0069 0090

ILE:

121

INTERFACING THE APPLE

This section defines the connections by which external devices are
attached to the APPLE II board. Included are pin diagrams, signal
descriptions, loading constraints and other useful information.

TABLE OF CONTENTS

 l. CONNECTOR LOCATION DIAGRAM

 2. CASSETTE DATA JACKS (2 EACH)

 3. GAME I/O CONNECTOR

 4. KEYBOARD CONNECTOR

 5. PERIPHERAL CONNECTORS (8 EACH)

 6. POWER CONNECTOR

 7. SPEAKER CONNECTOR

 8. VIDEO OUTPUT JACK

 9. AUXILIARY VIDEO OUTPUT CONNECTOR

122

Figure lA APPLE II Board-Complete View

123

A
7

KA

C
O

N
N

E
C

TO
R

C
O

N
N

E
C

T
O

R

C
A

S
S

E
T

T
E

 D
A

TA
 IN

C
A

S
S

E
T

T
E

 D
A

TA
 O

U
T

V
ID

E
O

T
O

P
 V

IE
W

P
E

R
IP

H
E

R
A

L
S

Right Side
of PC Board

Front
Edge

of
PC

Board

Figure 1B Connector Location Detail

J

J14B

K
12

K
13

K
14

S
P

E
A

K
E

R

C
O

N
N

E
C

T
O

R

C
O

N
N

E
C

T
O

R
P

O
W

E
R

K
1

C
O

N
N

E
C

TO
R

J14

B
14A

B

J2 J4 J5 J6 J8 J9 J11 J12

A
P

P
L

E
 II P

C
 B

O
A

R
D

124

BACK EDGE OF PC BOARD

C
O

N
N

E
C

T
O

R

A
U

X
IL

IA
R

Y
V

ID
E

O
 O

U
T

P
U

T

G
A

M
E

 I/O

LO
C

A
TIO

N
S

K
E

Y
B

O
A

R
D

O
U

TP
U

T

1
2

3
4

5
6

7
8

9
10

11
12

13
14

1
0

2
3

4
5

6
7

N.C.
ANO
AN1
AN2
AN3
PDL3
PDL1
N.C.

1
2
3
4
5
6
7
8

(Front Edge of PC Board)

GAME I/O CONNECTOR

125

CASSETTE JACKS

A convenient means for interfacing an inexpensive audio cassette
tape recorder to the APPLE II is provided by these two standard
(3.5mm) miniature phone jacks located at the back of the APPLE II
board.

CASSETTE DATA IN JACK: Designed for connection to the "EARPHONE"
or "MONITOR" output found on most audio cassette tape recorders.
VIN=lVpp (nominal), ZIN=l2K Ohms. Located at K12 as illustrated inFigure

CASSETTE DATA OUT JACK: Designed for connection to the "MIC" or
"MICROPHONE" input found on most audio cassette tape recorders.
VOUT =25 mV into 100 Ohms, ZOUT =lØØ Ohms. Located at Kl3 as illustratedin in Figure l.

GAME I/O CONNECTOR

The Game I/O Connector provides a means for connecting paddle controls,
lights and switches to the APPLE II for use in controlling video games,
etc. It is a 16 pin IC socket located at Jl4 and is illustrated in
Figure l and 2.

Figure 2

16
15
14
13
12
11
10
9

+5V
SWO
SW1
SW2

CO4O STB
PDLO
PDL2
GND

TOP VIEW

LOCATION J14

1
2
3
4
5
6
7
8

(Front Edge of PC Board)

KEYBOARD CONNECTOR

126

SIGNAL DESCRIPTIONS FOR GAME I/O

AN0-AN3: 8 addresses (CØ58-CØ5F) are assigned to selectively
 "SET" or "CLEAR" these four "ANNUNCIATOR" outputs.
 Envisioned to control indicator lights, each is a
 74LSxx series TTL output and must be buffered if used
 to drive lamps.

CØ4Ø STB: A utility strobe output. Will go low during Ø2 of a
 read or write cycle to addresses CØ4Ø-CØ4F. This is
 a 74LSxx series TTL output.

GND: System circuit ground. 0 Volt line from power supply.

NC: No connection.

PDLØ-PDL3: Paddle control inputs. Requires a Ø-l5ØK ohm variable
 resistance and +5V for each paddle. Internal lØØ ohm
 resistors are provided in series with external pot to
 prevent excess current if pot goes completely to zero
 ohms.

SWØ-SW2: Switch inputs. Testable by reading from addresses
 CØ61-CØ63 (or CØ69-CØ6B). These are uncommitted
 74LSxx series inputs.

+5V: Positive 5-Volt supply. To avoid burning out the connector
 pin, current drain MUST be less than l00mA.

KEYBOARD CONNECTOR

This connector provides the means for connecting as ASCII keyboard
to the APPLE II board. It is a l6 pin IC socket located at A7 and is
illustrated in Figures 1 and 3.

Figure 3

16
15
14
13
12
11
10
9

+5V
STROBE

RESET
N.C.

B6
B5
B7

GND

N.C.
-12V
N.C.
B2
B1
B4
B3
N.C.

TOP VIEW

LOCATION A7

SIGNAL DESCRIPTION FOR KEYBOARD INTERFACE

Bl-B7: 7 bit ASCII data from keyboard, positive logic (high level=
 "l"), TTL logic levels expected.

GND: System circuit ground. 0 Volt line from power supply.

NC: No connection.

RESET: System reset input. Requires switch closure to ground.

STROBE: Strobe output from keyboard. The APPLE II recognizes the
 positive going edge of the incoming strobe.

+5V: Positive 5-Volt supply. To avoid burning out the connector
 pin, current drain MUST be less than l00mA.

-l2V: Negative l2-Volt supply. Keyboard should draw less than
 50mA.

PERIPHERAL CONNECTORS

The eight Peripheral Connectors mounted near the back edge of the
APPLE II board provide a convenient means of connecting expansion
hardware and peripheral devices to the APPLE II I/O Bus. These are
Winchester #2HW25C0-lll (or equivalent) 50 pin card edge connectors
with pins on .l0" centers. Location and pin outs are illustrated in
Figures l and 4.

SIGNAL DESCRIPTION FOR PERIPHERAL I/O

A0-A15: 16 bit system address bus. Addresses are set up by the
 6502 within 300nS after the beginning of 0l. These lines will drive up to a total of l6 standard TTL loads.

DEVICE¯SELECT: Sixteen addresses are set aside for each peripheral
 connector. A read or write to such an address will
 send pin 4l on the selected connector low during 02 (500nS). Each will drive 4 standard TTL loads.

D0-D7: 8 bit system data bus. During a write cycle data is
 set up by the 6502 less than 300nS after the beginning
 of 02. During a read cycle the 6502 expects data to be ready no less than l00nS before the end of 02. These lines will drive up to a total of 8 total low
 power schottky TTL loads.

 127

DMA: Direct Memory Access control output. This line has a
 3K Ohm pullup to +5V and should be driven with an
 open collector output.

DMA IN: Direct Memory Access daisy chain input from higher
 priority peripheral devices. Will present no more
 than 4 standard TTL loads to the driving device.

DMA OUT: Direct Memory Access daisy chain output to lower
 priority peripheral devices. This line will drive
 4 standard TTL loads.

GND: System circuit ground. 0 Volt line from power supply.

INH: Inhibit Line. When a device pulls this line low, all
 ROM's on board are disabled (Hex addressed D000 through
 FFFF). This line has a 3K Ohm pullup to +5V and
 should be driven with an open collector output.

INT IN: Interrupt daisy chain input from higher priority peri-
 pheral devices. Will present no more than 4 standard
 TTL loads to the driving device.

INT OUT: Interrupt daisy chain output to lower priority peri-
 pheral devices. This line will drive 4 standard TTL
 loads.

I/O SELECT: 256 addresses are set aside for each peripheral connector
 (see address map in "MEMORY" section). A read or write
 of such an address will send pin l on the selected
 connector low during 02 (500nS). This line will drive 4 standard TTL loads.

I/O STROBE: Pin 20 on all peripheral connectors will go low during
 02, of a read or write to any address C800-CFFF. This line will drive a total of 4 standard TTL loads.

IRQ: Interrupt request line to the 6502. This line has a
 3K Ohm pullup to +5V and should be driven with an open
 collector output. It is active low.

NC: No connection.

NMI: Non Maskable Interrupt request line to the 6502. This
 line has a 3K Ohm pullup to +5V and should be driven with
 an open collector output. It is active low.

Q3: A 1MHz (nonsymmetrical) general purpose timing signal. Will drive up to a total of l6 standard TTL loads.

RDY: "Ready" line to the 6502. This line should change only
 during 0l, and when low will halt the microprocessor at the next READ cycle. This line has a 3K Ohm pullup to
 +5V and should be driven with an open collector output.

RES: Reset line from "RESET" key on keyboard. Active low. Will
 drive 2 MOS loads per Peripheral Connector.

 128

129

R/W: READ/WRITE line from 65Ø2. When high indicates that a read
 cycle is in progress, and when low that a write cycle is
 in progress. This line will drive up to a total of 16
 standard TTL loads.

USER l: The function of this line will be described in a later
 document.

Ø : Microprocessor phase V clock. Will drive up to a total of
 16 standard TTL loads.

Ø : Phase l clock, complement of Ø0. Will drive up to a total of l6 standard TTL loads.

7M: Seven MHz high frequency clock. Will drive up to a total
 of 16 standard TTL loads.

+12V: Positive l2-Volt supply.

+5V: Positive 5-Volt supply

-5V: Negative 5-Volt supply.

-12V: Negative l2-Volt supply.

POWER CONNECTOR

The four voltages required by the APPLE II are supplied via this
AMP #9-35Ø28-l,6 pin connector. See location and pin out in Figures
l and 5.

PIN DESCRIPTION

GND: (2 pins) system circuit ground. Ø Volt line from power
 supply.

+l2V: Positive 12-Volt line from power supply.

+5V: Positive 5-Volt line from power supply.

-5V: Negative 5-Volt line from power supply.

-l2V: Negative 5-Volt line from power supply.

O

1

(Toward Front Edge of PC Board)
LOCATIONS J2 TO J12

PERIPHERAL CONNECTORS
(EIGHT OF EACH)

TOP VIEW
(Back Edge of PC Board)PINOUT

Figure 4

GND
DMA IN

INT IN
NMI
IRQ
RES
INH

-12V
-5V

N.C.
7M
Q3

 1
USER 1

0
DEVICE SELECT

D7
D6
D5
D4
D3
D2
D1
D0

+12V

+5V
DMA OUT
INT OUT
DMA
RDY
I/O STROBE
N.C.
R/W
A15
A14
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0
I/O SELECT

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

5 6

3 4

1 2

LOCATION K1

POWER CONNECTOR

TOP VIEW
(Toward Right side of PC Board)

Figure 5

(BLUE/WHITE WIRE) -12V

(ORANGE WIRE) +5V

(BLACK WIRE) GND

- 5V (BLUE WIRE)

+12V (ORANGE/WHITE WIRE)

GND (BLACK WIRE)

PINOUT

130

SPKR:

131

SPEAKER CONNECTOR

This is a MOLEX KK 1ØØ series connector with two .25" square pins on
 .lØ" centers. See location and pin out in Figures 1 and 6.

SIGNAL DESCRIPTION FOR SPEAKER

+5V: System +5 Volts

Output line to speaker. Will deliver about .5 watt into
8 Ohms.

Figure 6
SPEAKER CONNECTIONS

PINOUT

Right Edge of PC Board

LOCATION B14A

VIDEO OUTPUT JACK

 This standard RCA phono jack located at the back edge of the APPLE II
 P.C. board will supply NTSC compatible, EIA standard, positive composite
video to an external video monitor.

A video level control near the connector allows the output level to be
adjusted from Ø to l Volt (peak) into an external 75 OHM load.

Additional tint (hue) range is provided by an adjustable trimmer capacitor.

See locations illustrated in Figure l.

Ri
gh
t
Ed
ge
 o
f

PC
 B
oa
rd

+5
V

SP
K

R

AUXILIARY VIDEO OUTPUT CONNECTOR

This is a MOLEX KK 100 series connector with four .25" square pins
on .lØ" centers. It provides composite video and two power supply
voltages. Video out on this connector is not adjustable by the on
board 200 Ohm trim pot. See Figures l and 7.

SIGNAL DESCRIPTION

GND: System circuit ground. Ø Volt line from power supply.

VIDEO: NTSC compatible positive composite VIDEO. DC coupled
 emitter follower output (not short circuit protected).
 SYNC TIP is Ø Volts, black level is about .75 Volts, and
 white level is about 2.Ø Volts into 47Ø Ohms. Output level
 is non-adjustable.

+l2V: +l2 Volt line from power supply.

+5V: -5 Volt line from power supply.

Figure 7 AUXILIARY VIDEO OUTPUT CONNECTOR

PINOUT

+12V
-5V
VIDEO

GND

Right Edge of PC Board

LOCATION J14B

132

Ba
ck

 E
dg
e
of
 P
C
Bo
ar
d

There MUST be RAM assigned to the zero block of addresses.

INSTALLING YOUR OWN RAM

THE POSSIBILITIES

The APPLE II computer is designed to use dynamic RAM chips organized
as 4O96 x l bit, or 16384 x 1 bit called "4K" and "16K" RAMs
respectively. These must be used in sets of 8 to match the system
data bus (which is 8 bits wide) and are organized into rows of 8.
Thus, each row may contain either 4Ø96 (4K) or 16384 (l6K) locations
of Random Access Memory depending upon whether 4K or 16K chips are
used. If all three rows on the APPLE II board are filled with 4K
RAM chips, then l2288 (l2K) memory locations will be available for
storing programs or data, and if all three rows contain l6K RAM
chips then 49152 (commonly called 48K) locations of RAM memory will
exist on board!

RESTRICTIONS

It is quite possible to have the three rows of RAM sockets filled with
any combination of 4K RAMs, l6K RAMs or empty as long as certain rules
are followed:

1. All sockets in a row must have the same type (4K or 16K)
RAMs.

2.

ASSIGNING RAM

The APPLE II has 48K addresses available for assignment of RAM memory.
Since RAM can be installed in increments as small as 4K, a means of
selecting which address range each row of memory chips will respond
to has been provided by the inclusion of three MEMORY SELECT sockets
on board.

LOCATIONS D1, E1, F1

133

Figure 8
MEMORY SELECT SOCKETS

PINOUT
TOP VIEW

(0000-OFFF) 4K "0" BLOCK
(1000-1FFF) 4K "1" BLOCK
(2000-2FFF) 4K "2" BLOCK
(3000-3FFF) 4K "3" BLOCK
(4000-4FFF) 4K "4" BLOCK
(5000-5FFF) 4K "5" BLOCK
(6000-EFFF) 4K "6" BLOCK

RAM ROW C
RAM ROW D
RAM ROW E
N.C.
16K "0" BLOCK (0000-3FFF)
16K "4" BLOCK (4000-7FFF)
16K "8" BLOCK (8000-BFFF)

1
2
3
4
5
6
7

14
13
12
11
10
9
8

TABLE OF CONTENTS

 1. INTRODUCTION

 2. INSTALLING YOUR OWN RAM

 3. MEMORY SELECT SOCKETS

 4. MEMORY MAP BY 4K BLOCKS

 5. DETAILED MAP OF ASSIGNED ADDRESSES

INTRODUCTION

APPLE II is supplied completely tested with the specified amount of
RAM memory and correct memory select jumpers. There are five different
sets of standard memory jumper blocks:

 l. 4K 4K 4K BASIC
 2. 4K 4K 4K HIRES
 3. l6K 4K 4K
 4. l6K l6K 4K
 5. l6K l6K 16K

A set of three each of one of the above is supplied with the board.
Type l is supplied with 4K or 8K systems. Both type l and 2 are
supplied with l2K systems. Type l is a contiguous memory range for
maximum BASIC program size. Type 2 is non-contiguous and allows 8K
dedicated to HIRES screen memory with approximately 2K of user BASIC
space. Type 3 is supplied with l6K, 2ØK and 24K systems. Type 4
with 30K and 36K systems and type 5 with 48K systems.

Additional memory may easily be added just by plugging into sockets
along with correct memory jumper blocks.

The 65Ø2 microprocessor generates a l6 bit address, which allows
65536 (commonly called 65K) different memory locations to be specified.
For convenience we represent each l6 bit (binary) address as a 4-digit
hexadecimal number. Hexadecimal notation (hex) is explained in the
Monitor section of this manual.

In the APPLE II, certain address ranges have been assigned to RAM
memory, ROM memory, the I/O bus, and hardware functions. The memory
and address maps give the details.

MEMORY

134

135

MEMORY SELECT SOCKETS

The location and pin out for memory select sockets are illustrated
in Figures l and 8.

HOW TO USE

There are three MEMORY SELECT sockets, Thcated at Dl, El and Fl
respectively. RAM memory is assigned to various address ranges by
inserting jumper wires as described below. All three MEMORY SELECT
sockets MUST be jumpered identically! The easiest way to do this
is to use Apple supplied memory blocks.

Let us learn by example:

If you have plugged 16K RAMs into row "C" (the sockets located at
C3-ClØ on the board), and you want them to occupy the first 16K of
addresses starting at ØØØØ, jumper pin l4 to pin lØ on all three
MEMORY SELECT sockets (thereby assigning row "C" to the ØØØØ-3FFF
range of memory).

If in addition you have inserted 4K RAMs into rows "D" and "E", and
you want them each to occupy the first 4K addresses starting at 4ØØØ
and 5ØØØ respectively, jumper pin 13 to pin 5 (thereby assigning row
"D" to the 4ØØØ-4FFF range of memory), and jumper pin l2 to pin 6
(thereby assigning row "E" to the 5ØØØ-5FFF range of memory). Remember
to jumper all three MEMORY SELECT sockets the same.

Now you have a large contiguous range of addresses filled with RAM
memory. This is the 24K addresses from ØØØØ-5FFF.

By following the above examples you should be able to assign each
row of RAM to any address range allowed on the MEMORY SELECT sockets.
Remember that to do this properly you must know three things:

If you are not sure think carefully, essentially all the necessary
information is given above.

l. Which rows have RAM installed?

2. Which address ranges do you want them to
occupy?

3. Jumper all three MEMORY SELECT sockets the
 same!

HEX
ADDRESS ASSIGNED FUNCTION

C00X

C0lX

C02X

C03X

C04X

C050

C051

C052

C053

C054

C055

C056

C057

C058

C059

C05A

C05B

C05C

C05D

C05E

C05F

137

Keyboard input.

Clear keyboard strobe.

Toggle cassette output.

Toggle speaker output.

"C040 STB"

Set graphics mode

 " text "

Set bottom 4 lines graphics

 " " " " text

Display primary page

 " secondary page

Set high res. graphics

 " color "

Clear "AN0"

Set "

Clear "AN1"

Set "

Clear "AN2"

Set "

Clear "AN3"

Set "

Keyboard strobe appears in bit
7. ASCII data from keyboard
appears in the 7 lower bits.

Output strobe to Game I/O
connector.

 Annunciator 0 output to
Game I/O connector.

Annunciator 1 output to
Game I/O connector.

Annunciator 2 output to
Game I/O connector.

Annunciator 3 output to
Game I/O connector.

I/O and ROM Address Detail

COMMENTS

HEX
ADDRESS ASSIGNED FUNCTION COMMENTS

C060/8

C061/9

C062/A

C063/B

C064/C

C065/D

C066/E

C067/F

C07X

C08X

C09X

C0AX

C0BX

C0CX

C0DX

C0EX

C0FX

Cl0X

C11X

C12X

Cassette input

"SW1"

"SW2"

"SW3"

Paddle 0 timer output

 " 1 " "

 " 2 " "

 " 3 " "

"PDL STB"

DEVICE SELECT 0

 " 1

 " 2

 " 3

 " 4

 " 5

 " 6

 " 7

 " 8

 " 9

 " A

State of "Cassette Data In"
appears in bit 7.
 input on
State of Switch 1 Game
I/O connector appears in bit 7.

State of Switch 2 input on
Game I/O connector appears
in bit 7.

State of Switch 3 input on
Game I/O connector appears
in bit 7.

State of timer output for
Paddle 0 appears in bit 7.

State of timer output for
Paddle 1 appears in bit 7.

State of timer output for
Paddle 2 appears in bit 7.

State of timer output for
Paddle 3 appears in bit 7.

Triggers paddle timers
during O2.

Pin 41 on the selected
Peripheral Connector goes
low during O2.

Expansion connectors.

 "

 "

138

HEX
ADDRESS ASSIGNED FUNCTION COMMENTS

C13X

C14X

C15X

C16X

C17X

C1XX

C2XX

C3XX

C4XX

C5XX

C6XX

C7XX

C8XX

C9XX

CAXX

CBXX

CCXX

CDXX

CEXX

CFXX

D000−D7FF

D800−DFFF

E000−E7FF

E800−DFFF

F000−F7FF

F800−FFFF

DEVICE SELECT

"

"

"

"

I/O SELECT

"

"

"

"

"

"

"

"

"

"

"

"

"

"

ROM socket D0

 " " D8

 " " E0

 " " E8

 " " F0

 " " F8

B

C

D

E

F

1

2

3

4

5

6

7

8,

9,

A,

B,

C,

D,

E,

F,

I/O STROBE

 "

 "

 "

 "

 "

 "

 "

"

"

"

"

"

Pin 1 on the selected
Peripheral Connector goes
low during O2.

NOTES:
 1. Perpheral Connector,
 0 does not get this
 signal

 2. I/O SELECT 1 uses the
 same addresses as
 DEVICE SELECT 8-F

Expansion connectors.

Spare.

Spare.

BASIC.

BASIC.

1K of BASIC, 1K of utility.

Monitor

139

140

SYSTEM TIMING DIAGRAM

TIMING RELATIONSHIPS

14M

TIMING
CIRCUITRY

7M

 SYSTEM TIMING

SIGNAL DESCRIPTIONS

l4M: Master oscillator output, l4.3l8 MHz +/- 35 ppm. All other
 timing signals are derived from this one.

7M: Intermediate timing signal, 7.l59 MHz.

COLOR REF: Color reference frequency used by video circuitry, 3.580 MHz.

0₀: Phase 0 clock to microprocessor, l.023 MHz nominal.

0₁: Microprocessor phase l clock, complement of 0₀, l.023 Mhz
 nominal.

0₂: Same as 0₀. Included here because the 6502 hardware and
 programming manuals use the designation 0₂ instead of 0₀.

Q3: A general purpose timing signal which occurs at the same
 rate as the microprocessor clocks but is nonsymmetrical.

MICROPROCESSOR OPERATIONS

ADDRESS: The address from the microprocessor changes during 0₁,
 and is stable about 300nS after the start of 0₁.

DATA WRITE: During a write cycle, data from the microprocessor
 appears on the data bus during 0₂, and is stable about
 300nS after the start of 0₂.

DATA READ: During a read cycle, the microprocessor will expect
 data to appear on the data bus no less than l00nS prior
 to the end of 0₂.

MASTER
OSCILLATOR

COLOR REF

TIMING CIRCUITRY
BLOCK DIAGRAM

3

2

1

0

141

FIG. S-3

8K-12K
ROM
MEMORY
BASIC
AND
SYSTEM
MONITOR

FIG. S-5

FIG. S-6

4K/16K
RAM
SELECT

RAM
ADDRESS
MUX

SYNC
COUNTER

FIG. S-4

ON-BOARD
I/O

DATA OUT

ADDRESS DECODE

D
M

A
 B

U
S

A
D

D
R

E
S

S
 B

U
S T
IM

IN
G

 B
U

S

RAM
ADDRESS
SELECT

D
M

A
 B

U
S

E
N

A
B

L
E

A
D

D
R

E
S

S
 B

U
S

A
D

D
R

E
S

S
 D

E
C

O
D

E

L
A

T
C

H
E

D
 D

A
T

A
 O

U
T

RAM
ROW
SELECT

S
Y

N
C

 O
U

T
 B

U
S

DATA OUT

D
A

T
A

 B
U

S

S
Y

N
C

 O
U

T
 B

U
S

L
A

T
C

H
E

D
 D

A
T

A
 O

U
T

A
D

D
R

E
S

S
 D

E
C

O
D

E

MPU
AND
BUS
DRIVERS

+ 12V
+5V
-5V

-12C
GND

POWER IN

VIDEO
GENERATOR

FIG. S-11

HPE

SYNC OUT BUS

TIMING BUS

DATA BUS

ADDRESS BUS

TIMING BUS

TO ALL SELECTIONS

FIG. S-2

DMA BUS

FIG. S-10

DATA IN

ADDRESS BUS

8 DECODED
PERIPERAL

CONNECTORSPERIPHERAL
I/O

FIG. S-9

FIG. S-7

FIG. S-8

4K - 48K
RAM
MEMORY

D
M

A
 B

U
S

REFERENCE
OSCILLATOR
AND
SYSTEM
TIMING

AUXILIARY VIDEO OUT

COMPOSITE VIDEO OUT

GAME I/O

CASSETTE IN

CASSETTE OUT

KEYBOARD

SPEAKER

FIGURE S-1 APPLE II SYSTEM DIAGRAM

B11

DMA

RA01

RA01

RA01

3.3K

3.3K

8

3

3

13

13

6

6

4

2

4

2

12

14

12

14

7

5

7

5

9

11

SYSTEM TIMING
FIG. S-3

NOT AVAILABLE ON
50 PIN PERIPHERAL

I/O CONNECTOR

AVAILABLE ON
50 PIN PERIPHERAL
I/O CONNECTOR

SYSTEM
ADDRESS

BUS

FROM PERIPHERAL I/O’s
SEE FIG. S-9

0

1

R/W

AD15

AD14

AD13

AD12

AD11

AD10

AD9

AD8

AD7

AD6

AD5

AD4

AD3

AD2

AD1

AD0

MPU
6502

TRISTATE
SYSTEM
DATA
BUS

FROM
PERIPHERAL I/O’s
SEE FIG. S-9

FROM KEYBOARD AND
PERIPHERAL I/O’s
SEE FIG. S-9 & S-11

8T97
(PINS 1 & 15 TRISTATE)

RAS

AX

CAS

14M

LD194

LDPS

7M

COLOR REF

H11

H10

H10

H11

H11

H10

H10

H11

H5

H4

H5

H5

H4

H4

H4

H3

H3

H3

H3

H3

H4

H5

H5

H4

H5

(PINS 1 & 15 TRISTATE)
8T28

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

9

10

11

12

13

14

15

16

17

18

19

20

22

23

24

25

34

12

4

6

10

6

10

12

6

4

2

10

12

2

2

14

14

4

11

5

7

9

7

9

11

7

5

3

9

11

3

3

13

13

5

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

R/W

4

6

2

40

33

32

31

30

29

28

27

26

30

29

21

31

49

48

47

46

45

44

43

42

8
10

9

28 21 1

1

2
37

3

12

13

29

36

37

38

39

20

18

22

40

10

10 9

11

C14

RA01

3.3K

3.3K

DA7

DA6

DA6

DA3

DA2

DA1

DA0

IRQ

RES

RDY

NMI

DA6

D1

D2

D3

D4

D5

D6

D7

IRQ

NMI

RDY

RES

D0

VSS VSSS0

+5V

C11 RA01
3.3K

INH

7M

Q3

USER 1

I/O SEL

R/W

FROM REFERENCE
OSCILLATOR AND TIMING

SEE FIG. S-3

VCC

+5V

142

FIGURE S-2 MPU AND SYSTEM BUS

0

1

143

C
O

LO
R

 R
E

F

7M7M

7
4

S
8

6

7
4

L
S

2
0

(1
/2

)

7
4

S
1

9
5

C
1

R
4

-4
7

P
3

P
1

P
2

P
0

J K

Q
2

Q
3

Q
3

D
0

C
L

6

E
A

40

8

l2
b

Z
b

D
2

H
P

E

(1
/4

)

B
2

6
5 4

4 5 2 1
C

2

+
1

2
V R

1
3

3
0

36 38

F
R

O
M

S
Y

N
C

 C
O

U
N

T
F

IG
.

S
-4

D
1

3
-1

2

14
M

+
5

V
S

O
F

T
 5

Q
2

Q
1

X
T

0
0

0
1

2
N

4
2

5
8

+
5

V

B
12 A
2

N
.C

.

S
1 l1
b

l3
b

S
0

B
13

R
A

S

A
X

C
A

S

Q
3

C
1

7
4

L
S

1
5

3
(1

/2
)

B
1

B
2

B
2

V
C

C

16

 1

V
C

C

7
4

S
1

7
5

D
2

C
P

D
3

l0
b

G
N

D

R
2

4
7

14
.3

18
M

H
z

Q
2Q

3

Q
1

Q
2

Q
0

Q
3

Q
1

D
1

Q
0

1
4

 M
H

z

+
5

V
+

5
V

V
C

C

C
P

C
L

G

N
D

P
E

Q
0

Q
1

16

 1

 8

2 1
(1

/4
)

74
S

86

0.
1μ

F 10 9

1

 8

R
3

1
5

0

L
D

1
9

4

L
D

P
S

8 3

9 10 11
14 7 2 4 15 6 3 10

3

8

11

G
N

D

7 5 4 6 2 3 10

15 14 13 11 12 9

37

10
9 8

13 12 9 5

9 10 12

16

2 1

2 11 13 14

F
IG

U
R

E
 S

-3

R
E

F
E

R
E

N
C

E
 O

S
C

IL
L

A
T

O
R

 A
N

D
 S

Y
S

T
E

M
 T

IM
IN

G

0
1

FIGURE S-4 SYNC COUNTER

144

74LS161

D12-14

D12-13

D12-12

D12-11

CET

CLR

P1

P2

P3

CL PE

Q3

Q2

Q0

Q1

P1

CL

Q3

Q2P2

P0 Q0

Q1

PE

9

P3

CL

CLR

Q2

Q1

P2

P1

D12

74LS161

TC

D14-13

D14-12

D14-11

D13-12

D13-14

D13-13

D13-11

74LS161

FROM
SYSTEM

TIME
FIG. S-3

LDPS

Q0

Q1

Q2

Q3

CEP

P0

15 8

P3

CLR

CET CEP

GND
Q3

PE

TC

Q0

+5V

GND
PE

9

P0
9

15

14

13

12

11

15 8

SYNC OUT

D14-14

SOFT 5

D11

D13

D14

+5V

16

7

10

1

3

4

5

6

2

H0

H1

H2

H3

VA

H4

H5

HPE

9

12

14

13

11

6

74LS161

CET CEPVCC

VCC CET CEP

V2

V3

V4

D11-14

D11-13

D11-12

14

13

12

11

VCC

VB

VC

V0

V1

CLOCK IN

SOFT 5 +5V

16 10 7

15 8

GNDTC

N.C.

8

3

4

5

1

6

2

16 10 7

SOFT 5
CLR

CL

P1

P2

P0

P3

3

5

6

1

4

2

14

13

12

11

16 10 7

9 8

1

5

3

4

2

-5V

SOFT 5

VCC

GNDTC

S
Y

S
T

E
M

 B
U

S
S

E
E

 F
IG

. S
-2

R
O

M
 M

E
M

O
R

Y
 A

R
R

A
Y

V

+
5V

ROM

ROM

ROM

ROM

T
O

 H
12

FI
G

. S
-9

F
12

-1
5

I/
O

 S
E

L

A
D

13

A
D

14

A
D

15

145

P
E

R
I I

/O
 M

U
X

A
D

11

A
D

12

20

38 13 14 15 16 17
74

LS
08

H
1

(1
/4

)

54
6

27

 2
6

 2

5

 2
4

 2

3

22

+
5V Z

1
14

V
C

C

R
O

M
 P

IN
O

U
T

 D
E

T
A

IL

FR
O

M
 F

12
C

H
IP

 S
E

L
E

C
T

S

93
16

B
R

O
M

2K
x

8

3.
3K

R
A

0
1

ROM

+
5V C

C24

49 48 47 45 44 43 4246

9 10 11 13 14 15 16 17

20

 2
1

 1

2

2 3 4 5 6 7 8 9 10 11 12 32

F
3

F
5

F
6

F
8

F
9

 F

11
D

A
0

D
A

1

D
A

2

D
A

3

D
A

4

D
A

5

D
A

6

D
A

7

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
D

0

A
D

1

A
D

2

A
D

3

A
D

4

A
D

5

A
D

6

A
D

7

A
D

8

A
D

9

A
D

10

IN
H

8 7 6 5 4 3 2 1

23 22 19 18
C

S
2

C
S

1
 C

S
3

 G
N

D

F8

F0

 E
8

 E

0

D
8

D

0

20
 2

1
20

 2
1

20
 2

1
20

 2
1

20
 2

1
20

 2
1

16

 7

9

10

 1

1

 1
2

 1

3

15

4
5

1
2

3
8

E
1

 E

2

A
1

 A

2

 A

3

 E
3

 G
N

D
Z

0

FI
G

U
R

E
 S

-5
 R

O
M

 M
E

M
O

R
Y

F
12

 7
4L

S
13

8

ROM 6

1

146

C
A

S

A
X

A
D

1
2

A
D

1
3

A
D

1
2

A
D

1
3

A
D

1
4

A
D

1
5

B
1

1
-6

D
1

2
-1

3

F
1

4
-6

C
1

3
-6

D
1

2
-1

3

B
1

1
-6

F
1

4
-6

V
C

H
IR

E
S

P
A

G
E

 2

7
4

L
S

0
8

(1
/2

)

H
1

H
1

F
1

3
-1

5

R
/W

K
B

D

D
2

A
2

H
1

A
2

-6

R
A

M
 S

E
L

R
A

M
 S

O
U

R
C

E
 S

E
L

1
6

K
 A

6
/4

K
 C

S

4
K

 C
A

S

*
S

E
E

 F
IG

.
S

-7
 F

O
R

 O
T

H
E

R
 H

A
L

F
 O

F
 C

1
2

H
IR

E
S

V
C

P
A

G
E

 2

H
B

L
7

4
L

S
0

4

C
1

1

4
K

 C
S

1
6

K
 R

S
4

K
/1

6
K

JU
M

P
E

R
P

L
U

G

7
4

L
S

1
5

3
(1

/2
)

7
4

L
S

2
5

7
(1

/2
) G

N
D

7
4

L
S

2
5

7

7
4

L
S

1
3

9

1

 1
5

8

3

2
1

(1
/6

)

V
C

C

V
C

C

V
C

C

Z
a

Z
b

Z
d

Z
c

1
0

B

G
N

D
1

0
D

+
5

V

G
N

D

V
C

C

+
5

V
+

5
V

1
6

6 5 3 4 2

1
4

1

1
3 1
0

1
4 1
1

S

Z
c

Z
d

11
d

11
c

10
d

1o
c

9 1
2

4
0

1
4

1
4

1
6

1
7

G
N

D
E

a

1 2 3 4 5 6 7

4 5 6 7 1
2

1
1

1
0

1
2

1
1

1
0

4 5 6

6
4 5

8

7

1
8

1
8

4 7 1
2

1
4 3

1
32

7
4

L
S

1
3

9

1
2

1
0 9

1
4

1
3

1
2

1
0 9 8

0 4 8
1 3 6

1
0

1
3

9 5

1
6

V
C

C

Z
a

1
3

3

1
3 2

1
4 1

1
5

8

1
4

1

5

8

l0
A

l0
C

S l1
A

L
1

B

L
1

C

L
1

D
E

1
3

1
2

1
0 9

1
1

2

8

1

1

1

2

A A B B

E
a

 E

b
 G

N
D

N
.C

.
1

1

N
.C

.
1

1

N
.C

.
1

1

0 4 8 0 4 8

E
1

-1
4

E
1

-1
3

E
1

-1
2

R
A

M
 R

O
W

 C

R
A

M
 R

O
W

 D

R
A

M
 R

O
W

 E

C
S

F
IG

.
S

-8
4

K
/1

6
K

JU
M

P
E

R
P

L
U

G

1 2 3 4 5 6 7

1
4

1
3

1
2

1
0 9 8

B B A A E
a E

b

F
1

-1
4

F
1

-1
3

F
1

-1
2

R
A

M
 R

O
W

 C

R
A

M
 R

O
W

 D

R
A

M
 R

O
W

 E

C
A

S
F

IG
.

S
-8

1
6

K
 C

A
S

1 2 3 4 5 6 7

0 4 8

1
0

9 81
4

1
3

1
2

1
5

8

+
5

V
1

6

+
5

V
1

6

T
O

 B
6

,
B

7
-1

5
O

N
-B

O
A

R
D

I/
O

 D
A

T
A

 S
O

U
R

C
E

S
E

L
E

C
T

F
IG

.
S

-1
0

F
IG

U
R

E
 S

-6

4

K
/1

6
K

R

A
M

 S
E

L
E

C
T4K

/1
6K

JU
M

P
E

R
P

L
U

G

F
1

E
1

D
1

E
2

F
2

C
1

J
1

C
12

*

0

1

147

SCREEN
ADDRESS

FROM
SYNC

COUNT

C12

74LS257

GND

D14-11

D13-14

D11-13

D11-12

D13-13

H3

H4

V3

V4

H5

B11-6

D13-11

D12-14

F14-6

E11-9

E11-7 A0

A3

E14

74LS283

GND

E12-9 A4

E12-7 A1

E13-9 A5

A2E13-7

AD11

AD10

AD8

D12-11

AD7

D12-12

AX

AD9

AD4

AD3

AD2

AX

AX

D14-14

AD0

AD1

AD5

AD6

74LS04

C11

FIG S-8

D11-14

FIG S-4

D14-12

D14-13
E13

74LS153

E11

74LS153

E12

74LS153

+5V

+5V

S1 VCC

VCC

VCC

VCC

VCCS1S0
+5V

+5V

+5V

GND

GND

5

3

14

7

2

11

15

12

6

4

3

12

13

6

10

11

5

40

2

3

7

8

40

5

6

11

40

9

10

12

13

N.C.
9

1

4

10

13

16

A1

A2

A3

C0

B2

B4

B3

A4

B1 C

5 6

8

16

4

7

815

21 2

5

6

3

1

4

3

12

13

6

5

10

11

14 2 16

7

9

1 15 8

H1

H0

7

9

14 2 16

S0 S1

Za

Zb

1 15 8

4

3

12

13

6

5

10

11

14 2 16

7

9

1 15 8

V2

H2

Za

Zb

Za

Zb

Za

Zb

*

(1/2)

(1/5)

2

3

0

1

4

*

V0

V1

l2a

l3a

l2b

l3b

l0a

l1a

lob

l1b

Ea

l2a

l3a

l2b

l3b

l0a

l1a

l0b

l1b

Ea Eb

Ea Eb

l2a

l3a

l2b

l3b

l0a

l1a

lob

l1b

S0

S

l1a

l1b

l0b

l0a
Ea

∑

∑

∑

∑

“D” SOURCES ARE
FROM SYNC COUNT

FIG S-4

TO
RAM
ADDRESS
LINES

FIGURE S-7 RAM ADDRESS MUX

PAGE 2
FIG S-10

FIG S-4
VB

FIG S-4
VA

FIG S-11
HIRES

SOFT 5

C11

* SEE FIG. S-6 FOR OTHER HALF OF C12

GNDEb

4

0

0

0

148

FIGURE S-8 4K TO 48K RAM MEMORY WITH DATA LATCH

FROM 4K/16K SELECT
FIG. S-6

RAM PINOUT DETAIL

F1-14 E1-14 F1-13 E1-13 F1-12 E1-12

ROW C
CAS

ROW C
CS/A6

ROW D
CAS

ROW D
CS/A6

ROW E
CAS

ROW E
CS/A6

E11-7

E12-7

E13-7

E13-7

E11-9

E12-7

RAMC3

RAMC4

RAMC5

RAMC6

RAMC7

RAMC8

RAMC9

RAMC10

RAMD3

RAMD4

RAMD5

RAMD6

RAMD7

RAMD8

RAMD9

RAMD10

RAME3

RAME4

RAME5

RAME6

RAME7

RAME8

RAME9

RAME10

DL0

DL1

DL2

DL3

DL4

DL5

DL6

DL7

CLOCK

74LS174

B5

RAS

CLOCK

74LS174

B8

FROM
RAM

ADDRESS
MUX

SEE FIG. S-7

C14
R/W

RAS

DECODED BY ROW

TO LATCHES

DECODED BY ROW

9

10

12

5

7

10

12

5

7

1

2

3

4

5

6

7

8

11

13

4

6

11

13

4

6

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

D3

D4

D1

D2

D3

D4

D1

D2

16

15

14

13

12

11

10

9

-5V

+12V +5V

DI

R/W

RAS

A5

A4

A3

VBB

VDD

GND

CAS

D0

A6

A2

A1

A0

VCC

4K/16K
RAM

FROM SYSTEM
DATA BUS

CSI

9

A0

A1

A2

A3

A4

A5

10

11

12

7

6

5

8

9

16

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

15 13

15 13

15 13

15 13

15 13

15 13

15 13

15 13

15 13

15 13

15 13

15 13

15 13

15 13

15 13

15 13

15 13

15 13

15 13

15 13

15 13

15 13

15 13

15 13

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

DA0

DA1

DA2

DA3

DA4

DA5

DA6

DA7

49

48

47

46

45

44

43

42

RAM
DATA

IN

1

3

4

+12V

-5V
GND

RAM

RAS

R/W11

-5V
13

12

TO ALL
RAMS

RAM
PIN

18

38

LATCHED
RAM
DATA
OUT

1

149

A
D

0

A
D

1

A
D

2

A
D

3

A
D

4

A
D

5

A
D

6

A
D

7

A
D

8

A
D

9

A
D

1
0

A
D

1
1

A
D

1
2

A
D

1
3

A
D

1
4

A
D

1
5

R
/W

R
D

Y

D
M

A

I/
O

 S
E

L

N
.C

.

+
5

V

D
M

A
 D

A
IS

Y
 O

U
T

IN
T

E
R

R
U

P
T

D
A

IS
Y

 O
U

T

T
O

P
 V

IE
W

D
M

A
 D

A
IS

Y
 I

N

IN
T

E
R

R
U

P
T

D
A

IS
Y

 I
N

D
A

0

D
A

1

D
A

2

D
A

3

D
A

4

D
A

5

D
A

6

D
A

7

+
1

2
V

Q
3

7
M

IN
H

R
E

S

IR
Q

N
M

I

N
.C

.

-5
V

-1
2

V

25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
I/

O
 E

N
A

B
L

E
F

R
O

M
 H

1
2

U
S

E
R

 1

1

M
h

z
D

E
V

 E
N

A
B

L
E

F

R
O

M
 H

2

7
M

h
z

2
M

h
z

1
M

h
z

G
N

D

F
IG

U
R

E
 S

-9
 P

E
R

IP
H

E
R

IA
L

 I
/O

 C
O

N
N

E
C

T
O

R
 P

IN
O

U
T

 A
N

D
 C

O
N

T
R

O
L

 L
O

G
IC

A
D

7

A
D

6

A
D

5

A
D

4

+
5

V 16

8

S
Y

S
T

E
M

 B
U

S

S
E

E
 F

IG
 5

-2

1
2

3
6

F
1

2
-1

5

A
D

8

A
D

9

A
D

1
0

U
S

E
R

1

FR
O

M
R

O
M

 D
E

C
O

D
E

FI
G

. S
-5

T
O

 F
13

-5
FI

G
. S

-1
0

H
1

2
-1

5
H

1
2

I/
O

 E
N

A
B

LE

7
4

L
S

1
3

8

G
N

D

I/
O 0

I/
O 1

I/
O 2

I/
O 3

I/
O 4

I/
O 5

I/
O 6

I/
O 7

J
2

J
4

J
5

J
6

J
8

J
9

J
1

1
J

1
2

+
5

V R
A

00
1

3K

O
P

T
IO

N
A

L
JU

M
P

E
R

S
E

E
 A

P
P

. N
O

T
E

 O
N

 H
O

W
 T

O
 U

S
E

+
5

V

V
cc15

14

5 4

13
12

11
10

9
7

14
13

12
11

10
9

7

N
.C

.

N
.C

.

41
41

41
41

41
41

41
41

1
1

1
1

1
1

1
1

N
.C

.

Z
0

16 15

E
1

E
2

A
1

A
2

A
3

E
3

4
5

1
2

3
6

8

A
2

E
3

A
3

A
1

V
cc

Z
0

Z
1

Z
2

Z
3

Z
4

Z
5

Z
6

Z
7

G
N

D

27 28

H
2

Z
1

Z
2

Z
3

Z
4

Z
5

Z
6

Z
7

27
27

27
27

27
27

27
N

.C
.

24 23
23

23
23

23
23

23
23

24
24

24
24

24
24

24

28
28

28
28

28
28

28

E
1

E
2

D
M

A
D

A
IS

Y
 C

H
A

IN

IN
T

E
R

R
U

P
T

D
A

IS
Y

 C
H

A
IN

I/
O

 C
O

N
N

E
C

T
O

R
 D

E
T

A
IL

74
LS

13
8

D
E

V
 E

N
A

B
L

E

1

0

0

F
13

74
L

S
13

8

H
12

74
L

S
13

8

74
LS

25
1

H
14

74
LS

25
7

B
6

74
LS

25
7

B
7

7
4

L
S

7
4

B
1

0

A
7

K
12

K
E

Y
B

O
A

R
D

C
O

N
N

E
C

T
O

R

D
L

0

D
L

1

D
L

2

D
L

3

D
A

4

D
A

5

D
A

6

D
A

7

R
E

S

D
L

4

D
L

5

D
L

6

D
L

7
G

N
D

A
D

5

A
D

6

A
D

7

A
D

8

A
D

9

G
N

D

A
2

-6

R
A

M
 S

E
L

S
T

R
B

G
N

D

 R
E

S
E

T

U
S

E
R

 1

G
N

D

R
19

-1
2K

R
18

10
0

C

N
C

N
C

N
C

N
C

V
C

C

V
C

C

A
N

D

A
N

1

A
N

2

A
N

3

G
N

D

S
T

B
S

W
0

 S
W

1
 S

W
2

P
D

L
0

P
D

L
1

P
D

L
2

P
D

L
3

2

3

4

1
0

0

+
5

V

C
1

+
5

V

+
1

2
V

B
0

B
1

B
2

B
3

B
4

B
5

B
6

+
5

V

1
2

K

+
5

V
+

5
V

2
2

0
K

R
1

6
1

2
K

R
1

7

7
4

1

G
A

M
E

 O
U

T
R

4
1

-1
2

K

+
5V

C
1

1
1

1
2

1
3 A B C

8
-5

V

4 9 14 1615 1

V
C

C

17
 1

6
 1

5
 1

4 Y 10

1
6

R
1

5

R
2

0

R
2

1

R
2

2

R
2

3

C
4

C
4

C
4

0
.0

2
2

0
.0

2
2

0
.0

2
2

0
.0

2
2

C
4

16 17

11 10 97 3 2 1

12

13
 1

4
 1

5

5 4

8

 9

 1
6

 1

2

1
5

1
0 7

6 1
0

7 1
1

5 13 4 12 3 6 11 14

3 12 13 10 11

2
1

1 1
0

7

6 5 7 9

(1
/2

)

6

8

7
3

 2
4

E

8

2¼
''-

 8
O

H
M

S
P

E
A

K
E

R

F
IG

U
R

E
 S

-1
0

O

N
-B

O
A

R
D

 I
/O

150

B
1

4
A

S
P

E
A

K
E

R
JA

C
K

C
1

R
25 27Q
2

D
2

74
LS

74
K

13

C
1

 C
2

G
N

D
Q

1

Q

1

 D
1

8 12

3

 1

5

 6

 2

 7

Q
4

M
P

S
A

13

R
24

47
K

C
R

I
1N

91
4

T
R

IS
T

A
T

E
S

Y
S

T
E

M
D

A
T

A
B

U
S

D
A

0

D
A

1

D
A

2

D
A

3

49 48 47 46

D
A

T
A

M
U

L
T

IP
L

E
X

E
R

C
A

S
S

E
T

T
E

D
A

T
A

 O
U

T

C
A

S
S

E
T

T
E

D
A

T
A

 I
N

K
13

55
3

Q
U

A
D

T
IM

E
R

H
13

G
A

M
E

I/
O

C
O

N
N

P
D

L
T

R
IG

G
E

R

74
L

S
13

8

F
12

R
O

M
A

D
D

I/
O

S
E

L

S
E

E
 D

E
TA

IL
S

 F
IG

. S
-5

A
D

D
R

E
S

S
 D

E
C

O
D

E
R

74
LS

25
9

F
1

4

C
1

A
D

4

A
D

10

S
E

E
 D

E
TA

IL
 F

IG
. S

-9

13 14 15 38

P
E

R
I

A
D

D

Z
4

Z
5

Z
6

Z
7 E

Z
0

Z
1

Z
2

Z
3

A
D

0

A
D

1

A
D

2

J1
4

2 3 4

2
0

A
D

1
2

A
D

1
3

A
D

1
4

A
D

1
5

A
D

1
1

6 7 8 9 10 10 11 122 3 4 5

A
D

0

A
D

1

A
D

2

A
D

3

45 44 43 42

E
1

E
2

A
1

A
2

A
3

51 2 3 4

4 5

D A B C

13 1 2 3 15 16 8

S
O

F
T

 5

+
5

V

+
5

V
16 8 1 2 3 4 6

A B C E
1

E
3

1 2 3 6

A
1

A
3

A
2

E
3

6

15
Z

0

V
C

C

G
N

D

V
C

C

G
N

D

Z
0

1510 11 7 9 14 15 13 12 54 5 6 7 9 10 11 12 14

Z
5

Z
4

Z
7

Z
6

Z
1

Z
0

Z
2

Z
3

E
2

F
14

-7

F
14

-6

F
14

-5

F
14

-4

H
IR

E
S

 M
O

D
E

T
E

X
T

 M
O

D
E

M
IX

 M
O

D
E

P
A

G
E

 2
F

IG
.

S
-6

 8
 7

F
IG

. S
-1

1

F
IG

. S
-1

1

T
O

V
ID

E
O

 G
E

N

1
6

8

G
N

D

-5
V 1

9 12 4 7

Z
c

Z
d

Z
a

Z
b

9 12 4 7

L
A

T
C

H
E

D
D

A
T

A
F

R
O

M
 R

A
M

V
C

C

9 16 15 14 13 12 5

N
.C

.

N
.C

.

S

 E
1

0
c

1
1

c

1
0

d

1
1

d

1
0

a

1
1

a

1
0

b

1
1

b

11 10 14 13 2 3 5 6

S

E

11
c

10
c

11
d

10
d

11
a

11
b

10
b

Z
c

Z
d

Z
a

Z
b

10 11 13 14 3 2 6 5

16
8

V
C

C

0.
1μ

F

0.
1μ

F

μFμFμFμF

1

0

0.
1μ

F

0.
1μ

F

B5 B8 B8

A3

74166 FROM
SYNC

COUNT
FIG. S-4

A10

74lS194

74LS257

B9

74LS194

A9

74LS151

B10
74LS74

B3 555
CURSOR
FLASHER

FROM
SYNC

COUNT
FIG. S-4

FROM ADD
DECODER F14

FIG. S-10

FROM
SYSTEM

TIME
FIG. S-3

FROM SYNC
COUNT
FIG. S-4

FROM SYSTEM TIME
FIG. S-3

A5

2513
CHAR
GEN

TEXT
MODE

MIX
MODE

FROM
SYSTEM

TIME
FIG. S-3

DL0

DL1

DL2

DL3

DL4

DL5

14M

7M

LDPS

DL0

DL1

DL2

DL3

D13-11

D12-14

D12-13

DL6

DL7

D14-12

D13-13

D13-14

D14-11

D12-13

D14-14

F14-4

F14-5

V2

V4

D11-14

D11-12 74LS11

74LS02

F14-7

14M

LD194

HIRES
MODE

74LS02
(1/4)

(1/3)

74LS51

H2

H5

H4

H3

74LS
174

74LS
174

74LS
174

74LS08

B11

D11-14

D12-11

D11-13

D11-12

74LS194

+5V

R12

12K

-5V

Q3
2N3904

+5V
R6-2.7K

R7-1.5K

R8-2.0K

(1/2)

74LS51

74LS32
74LS08

74LS86

B11
B13

74LS02

74LS08

GND

VCC

VCC

VCC

R5-1K

L1C2C3

B12

B13

GND

DSL

+5V

RAS

+5V

VA

VB

VC

36

1011 14 3 8

7M

GND

QH

V2

V1

V3

V4

74LS
04

H B

IN

C C C

D5D0 D0 Q0Q5Q0

VCC

VC

H0

3.3M

R13

10B

10D

11C

S

+5V

C1

R11
200
POT

pF
47pF5-50

B13
B12

(1/2)

C13

C14
B11

(1/4)
(1/4)

(1/4)

(1/4)

CP

-5V

(1/2)

GND

(1/4)
(1/4)

(1/6) (1/6) (1/6)

24

CL2

CL1

C

D

E

F

G

A

6

8

4
C11

(1/6)

3

8
9

10

5

4

13 3
12

11

6

(1/3)

5

3

4

16 8

9 9 9

15 3 22 14

7

15

13

7

6

15

2

1

4

5

6

7

8

4

5

10

11

12

13 13

4

5

6

7

8

12

B2

D4

D5

D3

D2

D1

D0

D6

D7 C

W

A STRB

VCC

Q0 Q1 Q2

D3 D2
D0

D1

CP

S0

S1

A1

A2

A3

A4

A5

A6

A7

A8

A9
CE

(1/4)

12

3

11
5

4
6

8

4

7 6 2

1

5

14

10

1

11 10

15

10
10

8

D0

D1

D2

D3

GND

S0 S1

D0

D1

D2

D3

S0 DSL S1

Q0

Q2

Q0

Q2

GND ZA ZC 11B 10D10A 11A ZD ZB

14

15

16

17

18

19

20

21

22

01

02

03

04

05

11

6 5

16

12
3

4

11

9

10

5 2 5

3

6

9 8

4

5

D Q

C

3

4

5

6

11
11

9
9

13

3

4

5

6

9 7 16

CP

13

E

8 4 9 2 3 5 13 7 1215

LD

9
10
11
12

1
13

4

5

2

3

6

15

14

1

2

3

4

13

12

14 15 13
11 10 7

16

2

3
1
2

13

1

12

B

TO C12-14
4K.16K
SELECT
FIG. S-6

C13-6

16

-5V

FROM
SYSTEM

TIME
FIG. S-3

151

FROM
LATCHED

RAM
DATA

FIG. S-8

AUXILIARY
VIDEO
JACK
J14B

FIGURE S-11 VIDEO GENERATOR

B4

A8

DL4

DL5

DL6

DL7

FROM
SYNC

COUNT
FIG. S-4

FROM
LACHED

RAM
DATA

FIG. S-8

TO H1, C12
4K/16K
SELECT
FIG S-6

HIRES
ENABLEB11-6

R10

27

RCA TYPE
PHONE JACK

COMPOSITE
VIDEO
OUT
K14

4 PIN MOLEX
22-03-2041

-5V +12V

R9
10

V
ID

E
O

 T
E

X
T

COLOR
BURST

74LS11COLOR REF

C13

HOR BLANKING

FROM
ADDRRESS

DECODER F14
FIG. S-10

0.1μF
27μH

khaibitgfx@gmail.com

™

[408] 996-1010

10260 Bandley Drive
Cupertino, California 95014

Steven Jobs
Vice President,
New Product Development

apple computer ınc.

-

10260 BANDLEY DRIVE
CUPERTINO, CALIFORNIA 95014 U.S.A.

cnocpepa mp eut r ıl .
408() 996 1010TELEPHONE

	Blank Page

