APPLE 1L
REFERENCE MANUAL

NOTICE

Apple Computer Inc. reserves the right to make improvements in the
product described in this manual at any time and without notice.

DISCLAIMER OF ALL WARRANTIES AND LIABILITY

APPLE COMPUTER INC. MAKES NO WARRANTIES, EITHER
EXPRESS OR IMPLIED, WITH RESPECT TO THIS MANUAL OR WITH
RESPECT TO THE SOFTWARE DESCRIBED IN THIS MANUAL, ITS
QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR
ANY PARTICULAR PURPOSE. APPLE COMPUTER INC. SOFTWARE IS
SOLD OR LICENSED “AS IS" THE ENTIRE RISK AS TO ITS QUALITY
AND PERFORMANCE IS WITH THE BUYER. SHOULD THE
PROGRAMS PROVE DEFECTIVE FOLLOWING THEIR PURCHASE,
THE BUYER (AND NOT APPLE COMPUTER INC., ITS DISTRIBUTOR,
OR ITS RETAILER) ASSUMES THE ENTIRE COST OF ALL
NECESSARY SERVICING, REPAIR, OR CORRECTION AND ANY
INCIDENTAL OR CONSEQUENTIAL DAMAGES. IN NO EVENT WILL
APPLE COMPUTER INC. BE LIABLE FOR DIRECT, INDIRECT,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM
ANY DEFECT IN THE SOFTWARE, EVEN IF APPLE COMPUTER INC.
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION
OF IMPLIED WARRANTIES OR LIABILITY FOR INCIDENTAL

OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION

OR EXCLUSION MAY NOT APPLY TO YOU.

This manual is copyrighted. All rights are reserved. This document may
not, in whole or part, be copied, photocopied, reproduced, translated or
reduced to any electronic medium or machine readable form without
prior consent, in writing, from Apple Computer Inc.

<) 1979, 1981 by APPLE COMPUTER INC.
10260 Bandley Drive
Cupertino, California 95014
(408) 996-1010

The word Apple and the Appla Logo are registered trademarks of
APPLE COMPUTER IN

APPLE Product #A2L0001A
(030-0004-C)

WARNING: This aqunpmam has been oarllﬂed to comply with the limits

for a Class B comy device, p Subpart J of Part 15 of FCC
Rules. Only peripherals (
pdnlafs, etc.) certified to cumply with the Class B limits may be

ttached to this tion with non-certified peripherals

is likely to result in Iuter[erence to radio and TV reception.

Apple II Reference Manual

A REFERENCE MANUAL
FOR THE APPLE 11
AND THE APPLE 1I PLUS
PERSONAL COMPUTERS

TABLE OF CONTENTS

CHAPTER 1
APPROACHING YOUR APPLE

2 THE POWER SUPPLY

3 THE MAIN BOARD

4 TALKING TO YOUR APPLE

§ THE KEYBOARD

i REAINNG THE KEYBOARD

L] THE APPLE VIDEOD DISPLAY

9 THE VIDEQ CONNECTOR
EURAPPLE (50 HZ) MODIFICATION

10 SCREEN FORMAT

12 SCREEN MEMORY

2 SCREEN PAGES

12 SCREEN SWITCHES

14 THE TEXT MODE

17 THE LOW-RESOLUTION GRAPHICS (LO-RES) MODE

19 THE HIGH-RESOLUTION GRAPHICS (H

0 OTHE H INPUT/OUTPUT FEATURES

: kl-ll

13 THE hJ\MI WO CONNECTOR

213 ANNUNCIATOR OUTPUTS

24 ONE-WIT INPUTS

24 ANALOG INPUTS

15 STROBE OUTPUT

25 VARIETIES OF APPLES

25 AUTOSTART ROM / MONITOR ROM
26 REVISION @ / REVISION | BOARD
27 POWER SUPPLY CHANGES

1T THE APPLE Il PLUS

CHAPTER 2
CONVERSATION WITH APPLES

STARNDARD OUTPUT
THE STOP-LIST FEATU
BUT SOFT. WHAT LIGHT THROUGH YONDER WINDOW BREAKS!
1OR, THE TEXT WINDOW)

! G 1T ALL IN BLACK AND WHITE

JARD INPUT

RDKLEY

GETLN

ESCAPE CODES

THE RESET CYCLE

AUTOSTART ROM RESET

AUTOSTART ROM SPECIAL LOCATIONS

“OLD MONITOR™ ROM RESET

CHAPTER 3
THE SYSTEM MONITOR

ENTERING THE MONITOR

ADDRESSES AND DATA

EXAMINING THE CONTENTS OF MEMORY

EXAMINING SOME MORE MEMORY

EXAMINING STILL MORE MEMORY

CHANGING THE CONTENTS OF A LOCATION

CHANGING THE CONTENTS OF CONSECUTIVE LOCATIONS
MOVING A RANGE OF MEMORY

COMPARING TWO RANGES OF MEMORY

SAVING A RANGE OF MEMORY HN TAPE

C RFATING AND RUNNING MAC HI\IP LANGUAGE PROGRAMS
THE MINI-ASSEMBLER

51
53

55
5.
5
a6l
05

AING PROGRAMS

ING AND CHANGING REGISTERS
MISCELLANEOUS MONITOR COMMANDS
SPECIAL TRICKS WITH THE MONITOR
CREATING YOUR OWN COMMANDS
SUMMARY OF MONITOR COMMANDS
SOME USEFUL MONITOR SUBROLUTINES
MONITOR SPECIAL LOCATIONS
MINEASSEMBLER INSTRUCTION FORMATS

CHAPTER 4
MEMORY ORGANIZATION

(1]
]
T2
k]
74

RAM STORAGE

RAM CONFIGLRATION BLOCKS
ROM STORAGE

110 LOCATIONS

ZERO PAGE MEMORY MAPS

CHAPTER 3
INPUT/OUTPUT STRUCTURE

T
74
w0
80
1

82
®3
84

BUILT-IN I/O

PERIPHER AL HOARD 170

PERIPHERAL CARD 120 SPACE

PERIPHER AL CARID ROM SPACE

110 PROGRAMMING SUGGESTIONS
PERIPHERAL SLOT SCRATCHPAL RAM
THE CSW/KSW SWITCHES

EXPANSION ROM

CHAPTER 6
HARDWARE CONFIGURATION

8E
L]
2
W
9%
L
9%
W
1wy
100
12
103
114
15
105

THE MICROPROCESSOR
SYSTEM TIMING
POWER SUPPLY
ROM MEMORY
RAM MEMORY
THE VIDEO GENERATOR
VIDEQ OUTPUT JACKS
BUILT-IN 10
USER |7 JUMPER

ME 1/0 CONNECTOR
KEYBOARIDY
KEYBOARD CONNECTOR
CASSETTE INTERFACE JAUKS
POWER CONNECTOR
SPEAKER
PERIPHERAL CONNECTORS

" APPENDIX A

THE 6502 INSTRUCTION SET

“ APPENDIX B

138

SPECIAL LOCATIONS

APPENDIX C
ROM LISTINGS

" GLOSSARY

BIBLIOGRAPHY

INDEX

190
194
195
195
195

GENERAL INDEX
INBEX OF FIGURES
INDEX OF PHOTOS
INDEX OF TABLES
CAST OF CHARACTERS

INTRODUCTION

This is the User Reference Manual Tor the Apple 11 and Apple 11 Plus personal computers. Like
the Apple itself. this book is a ool As with all tools, you should know a little about it before
¥Ou Start Lo use i

This book will not teach you how 1o program. 1t is o book of facts, not methods. 1T you have
just unpacked your Apple, or you do not know how 1o program in any of the languages available
for i1, then before you continue with this book, read one of the other manuals sccompanying
your Apple. Depending upon which variety of Apple you have purchused, you should have
received one of the lollowing:

Apple 11 BASIC Programming Manual
(part number AZLODDS)

The Applesoft Tutorial
Ipart number A2LOOIE)

These are ttorial manuals for versions of the BASIC language available on the Apple. They also
include complete instructions on setting up your Apple. The Bibliography at the end of this
manual lists other books which may interest you.

There are a few different varieties of Apples, and this manual applies 1o all of them, It is possible
that some of the features noted in this manual will not be available on your particular Apple. In
places where o manusl mentions fe: s which are not universal to all Apples, it will use a
footnote 1o warn you of these differences.

This manual describes the Apple 1l computer and its parts and procedures. There are sections on
the System Monitor, the input/outpul devices and their the internal ization of
memory and input/output devices, and the actual electronic design of the Apple self. For infor-
mation on any other Apple hardware or software product, please refer 1o the manual accompany-
ing that product.

RADIO AND TELEVISION INTERFERENCE

The equipment described in this mamal generates and uses radio
frequency energy. If it {s not installed and used properly, that is
in strict accordance with our instructions, it may cause interference
to radio and television reception.

This equipment has been tested and complies with the limits for a
Class B computing device in accordance with the specificationms in
Subpart J of Part 15 of FCC rules. These rules are designed to
provide reasonabhle protection against such interference in a
residential installation. However, there ia no guarantee that the
interference will mt occur in a particular installation.

You can determine whether your computer is causing interference hy
turning it of f. If the interference stops, it was probably caused by
the computer. If your computer does cause interference to radio or
television reception, you can try to correct the interference by
using one or more of the following measures:

= Turn the TV or radio antenna until the interference stops.
= Move the computer to one side or the other of the TV or radio.
= Move the computer farther away from the TV or radio.

= Plug the computer into an outlet that is on a different circuit
from the TV or radio. (That is, make certain the computer and the TV

or radio are on circuits controlled by different circuit breakers or
fuses.)

If necessary, you should consult your dealer or an experienced
radio/television technician for additional suggestions. You may find
the following booklet prepared by the Federal Comsunications
Commission helpful:

"How to ldentify and Resolve Radio-TV Interference Problems"

This booklet is available from the U.5. Govermment Printing Office,
Washington, DC 2042, Stock mumber @@4-J0@-@345-4,

THE POWER SUPPLY

THE MAIN BOARD

TALKING TO YOUR APPLE

THE KEYBOARD

READING THE KEYBOARD

THE APPLE VIDEO DISPLAY

THE VIDEO CONNECTOR
EURAPPLE (50 HZ) MODIFICATION
SCREEN FORMAT

SCREEN MEMORY

SCREEN PAGES

SCREEN SWITCHES

THE TEXT MODE

THE LOW-RESOLUTION GRAPHICS (LO-RES) MODE
THE HIGH-RESOLUTION GRAPHICS (HI-RES) MODE
OTHER INPUT/OUTPUT FEATURES
THE SPEAKER

THE CASSETTE INTERFACE

THE GAME 1/0 CONNECTOR
ANNUNCIATOR OUTPUTS

ONE-BIT INPUTS

ANALOG INPUTS

STROBE OUTPUT

VARIETIES OF APPLES
AUTOSTART ROM / MONITOR ROM
REVISION @ / REVISION | BOARD
POWER SUPPLY CHANGES

THE APPLE 11 PLUS

For detailed information on setting up your Apple, refer to Chapter | of either the Apple BASIC
Programming Manual or Applesoft Tutorial.

In this manual, all directi

il instructions will refer 1o this orentation: with the Apple’s
typewriter-like keybourd Tacing you, ““front"” and ““down' are towards the keyboard, wk'" and
“up™ are away. Remove the lid of the Apple by prying up the back edge until it “*pops™, then
pull straight back on the lid and N i off

This is what you will see

Powe:

Supply

Main Board

Speaker

Photo 1. The

Apple 11,

THE POWER SUPPLY

The metal box on the lefi side of the interior is the Power Supply. It supplies four vollages:
+5v, —52v, +11.8v, and —12.0v. I is a high-frequency *“switching”-type power supply, with
many prolective features to ensure that there can be no imbalances between the different sup-
plies. The main power cord for the computer plugs directly into the back of the power supply
The power-on switch is also on the power supply itsell, 1o protect yvou and your fingers from
accidentally becoming part of the high-voltage power supply circuit

[

110 volt model 1104220 volt model

Fhoto 2. The back of the Appl

THE MAIN BOARD

Power Supply.

The large green printed circuit board which takes up most of the bottom of the case is the com-
puter itsell. There are two slightly different models of the Apple 11 main board: the original
{Revision 8 and the Revision | board. The slight differences between the two lie in the elec-
tronics on the board. These differences are discussed throughout this book. A summary of the
differences appears in the section **Varieties of Apples™ on page

On this board there are aboul eighty inegrated circuits and 3 handful of sther components. In
the center of the board, just in front of the eight gold-toothed edge connectors (**slots™) at the
rear of the board, is an integrated circuit larger than all others. This is the brain of your Apple
It is a Synerntek/MOS Technology 6502 microprocessor. In the Apple, it runs at a rate of
1,023,000 machine cycles per second and can do over five hundred thousand addition or subtrac-
tion operations in one sccond. 1t has an addressing range of 65536 cighi-bit bytes. s repertory
includes 56 instructions with 13 addressing modes. This microprocessor and other versions of it
are used in many computers systems, as well as other Lypes of electronic equipment.

Just below the microprocessor are six sockets which may be filled with from one 1o six slightly
smaller integrated circuits, These ICs are the Read-Only Memory (ROM) ““chips™ for the Apple
They contain programs for the Apple which are available the moment you turn on the power
Many programs are available in ROM, including the Apple System Monitor, the Apple Autostart
Monitor, Apple Integer BASIC and Applesoft 11 BASIC, and the Apple Programmer’s Aid #1 util-
ity subroutine e. The number and contents of yvour Apple’s ROMs depend upon which
type of Apple you have, and the accessories you have purchased

Right below the ROMs and the central mounting nut is an area marked by a white square on the
board which encloses iwenty-four sockets for integrated circuits. Some or all of these may be
filled with ICs. These are the main Random Access Memory (RAM) “chips™ for your Apple.
An Apple can hold 4,096 o 49,152 bytes of RAM memory in these three rows of components.®
Each row can hold cight 1Cs of gither the 4K or 16K variety. A row must hold eight of the same

¥ to 64K by purchasing the Apple Language Card, part of the Apple

type of memory components, but the two types can both be used in various combinations on
different rows 1o give nine different memory sizes.” The RAM memory is used 1o hold all of the
programs and data which you are using at any particular time. The information stored in RAM
disappears when the power is tuned off.

The other components on the Apple 11 board have various functions: they control the flow of
information from one part of the computer to another, gather data from the outside world, or
send information 1o you by displaying it on a television screen or making a noise on 4 speaker.

The eight long peripheral slots on the back edge of the Apple’s board can cach hold a peripheral
card 1o allow you 1o exiend your RAM or ROM memory, or to connect your Apple to a printer or
other input/output device, These slois are sometimes called the Apple's “backplane™ or
“*mather board™

TALKING TO YOUR APPLE

Your link to your Apple is at your fi i Most and that are used with
the Apple expect you 1o talk to them through the Apple’s keyboard. Tt looks like a normal type-
writer keyboard, except for some minor rearrangement and a few special keys. For a quick
review on the keyboard, see pages 6 through 12 in the Apple 11 BASIC Programming Manual
of pages 3 through 11 in The Applesoft Tutorial.

Since you're talking with your fingers, you might as well be hearing with your cves, The Apple
will tell you what it is doing by displaying letters, numbers, symbols, and sometimes colored
blocks and lines on a black-and-white or color television set.

* The Apple 11 is designed 10 use both the 16K and the less expensive 4K RAMs. However, due 1o the greater
availability and reduced cost of the 16K chips, Apple now supplies paly the 16K RAMSs.

THE KEYBOARD

The Apple Keyboard
Number of Keys: 52
Coding: Upper Case ASCII
Number of codes: 91
Output: Seven bits, plus strobe

Power requirements: 4+ 3v a1 120mA
=12v a1 50mA

Rollover: I key

Special keys: CTRL
ESC
RESET
REPT

Memory mapped locations: Hex Decimal
Data SCMW 49152 16384
Clear SCHI® 49168 -16368

The Apple 11 has a built-in $2-key lik 1 which using the Amer-
ican Standard Code for Information Interchange (ASCIF. Ninewy of the 96 upp
ASCN characters can be gencrated dircetly by the keyboard. Table 2 shows the keys on the key-
board and their associated ASCI codes. “*Photo™ 3 is a diagram of the keyboard.

The keyboard is electrically connected 1o the main crcuit board by a lb-conductor cable with
plugs at each end that plug into standard imtegrated circuil sockets. One end of this cable is con-
nected 10 the keyboard: the other end plugs into the Apple board’s keyboard connector, near the
very front edge of the board, under the keyboard itsell. The elecirical specifications for this con-
nector are given on page 102,

Maost languages on the Apple have commands or stslements which allow your program to accept
input from the keyboard quickly and easily (for example, the INPUT and GET statements in
BASIC), However, vour programs can also rexd the keyboard directly.

* Al ASCI codes used by the Apple normally have their high it set. This is the same as standard mark-
parity ASCIL

" -

“ITTTELTLID 1 =
T LLLLELIT LT -
= |

“Phata’ 3. The Apple Keyboard.

READING THE KEYBOARD

The keyboard sends seven bits of information which together form one character. These seven
bits, along with another signal which indicates when a key has been pressed, are available 1o most
programs as the contents of a memory location. Programs can read the current state of the key-
board by reading the contenis of this location. When you press a key on the keyboard, the value
in this location becomes |28 or greater, and the particular value it assumes is the numeric code
for the character which was typed, Table 3 on page § shows the ASCII characters and their asso-
clated numeric codes. The location will hold this one value until you press another key, or until
your program tells the memory location to forget the character it’s holding.

Once your program has accepted and understood a keypress, it should tell the keyboard's memory
location 10 “release™ the character it is holding and prepare to receive a new one. Your program
can do this by referencing another memory location. When you reference this other location, the
value contained in the first location will drop below 128, value will stay low uniil you press
another key, This action is called “'clearing the keyboard strobe™. Your program can either read
or write 1o the special memory location; the data which are written 1o or read from that location
are irrelevant. It is the mere reference 1o the location which clears the keyboard strobe. Once you
have cleared the keyboard strobe, you can still recover the code for the key which was last
pressed by adding 128 (hexadecimal $88) 1o the value in the keyboard location,

These are the special memory locations used by the keyboard.

Table 1:_ Keyboard Special Locations

Lescation: s
Hex Decimal Desicn
SCOM 49152 -16384 Keyboard Data
SCAIR 49168 - Clear Keyboard Strobe

] key at the upper right-hand corner does not generate an ASCII code, bul instead is
connected 10 the microprocessor. When this key is pressed, all processing stops. When
the key is released, the computer starls a reset cycle. See page 36 for a description of the RESET

Tuncticn

The |(_‘I'liL and SHu‘ﬂ keys generate no codes by themselves, but only alter the codes produced

by oiher keys.

The [REPT] key, if pressed alone, produces a duplicate of the last code that was generated. If you

press and hold down the [REPT] key while you are holding down a charscter key, it will act as if
you were pressing that kl:} rcpculcdl; at a rate of 10 presses each second. This repetition will

cease when you release either the charscter key or

The POWER light at the lower leli-hand comer is an indicator lamp to show when the power 1o

the Apple is on.
Table 2: Keys and Their Associated ASCIH Codes

Key | Alone CIRL Both Key | Alone
space | SA8 SAR SAP | RETURN | S8D
@ | ShHa SR SBA G sC7

1" | SHl SBI SAl H | SCB
r| sB2 SB2 5A2 1| sCo
i# | SB3 SB3 5A3 J| sca
45 | SB4 SB4 5A4 K | SCB
5% | SBS SBS $AS L | scC
6& | SB6 SBb SAb M | SCD
7 SHT SBT 5A7 N° | SCE
il SHE SHE SAR 0 SCF
kLl SBY SBY SA9 P@ | SD®
. SBA SBA SAA Q SD1

+ | SBB SBB SAB R | SD2
< | SAC SAC SBC 5| SD3
—-= | SAD SAD SBD T | SD4
> | SAE SAE SBE u | SDS
/1| SAF SAF SBF vV | SDé
A | 8CI $81 $81 w | sD7
B | SC2 382 582 X | SDg

C | 3C3 383 383 Y | SD9
D | $C4 584 584 Z | SDA
E| $C5 385 385 - | S88

F| $Co 386 386 — | $95
ESC | S9B

CTRL

SED
587
538
589
SEA
SR
S8C
S8D
SSE
S8F
598
591

$52
$93
594
595
596
597
598
599
594
S8
595
598

598

Both

All codes are given in hexadecimal. To find the decimal equivalents, use Table 3.

Table 3: The ASCII Character Set

al: 128 144 1680 176 192 2 4 2

Hex: S8@ 599 SA@ SBR SCP SD@ SEQ SFB
(] S8 | nul dle (] [-] [P
1 51 soh dcl [1 A Q a q
v 52 stx de £ 2 B R b r
3 53 | ex de3 # 3 C 5 © §
4 34 | eot dcd 3 4 1] T d 1
5 $5 |eng nak W 5 E u e u
[% | ack syn & [¥ v r v
7 ST |bel eb ° T 6 W g 0w
B 38 bs can i 8 H X h X
9 39 ht em] 9 1 ¥ i ¥
It 5A If sub - % 1 z i z
11 5B Vi oesc = b K | k |
12 sc|m 5 & T X |
13 5D er B - - M 1 m 1
14 SE 50 s g > N : n)
15 §F si us I 1 4] o o rub

Groups of two and three lower case letters are abbreviations for standard ASCII control charac-
lers.

Not all the characters listed in this table can be g d by the i . the char-
acters in the two rightmost columns (the lower ase letters), the symbuls [(left square brarktl} A
(backslash), _ (underscore), and the control characters “fs™, “'us™, and “'rub”, are not available
on the Apple keyboard,

The decimal or hexadecimal value for any character in the above table is the sum of the decimal
or hexadecimal numbers appearing at the top of the column and the left side of the row in which
the character appears.

THE APPLE VIDEO DISPLAY

The Apple Video Display
Display type: Memory mapped into system RAM

Display modes: Text, Low-Resolution Graphics,
High-Resolution Graphics

Text capacity: 960 characters (24 lines, 40 columns)
Character type: 5 % 7 dot matrix
Character set: Upper case ASCII, 64 characters
Character modes: Normal, Inverse, Flashing
Giraphics capacity: 1,920 blocks {Low-Resolution)
in a 40 by 48 array
53,760 dots {High-Resolution)
in a 280 by 192 array

Number of colors: 16 (Low-Resolution Graphics)
6 (High-Resolution Graphics)

THE VIDEO CONNECTOR

In the right rear corner of the Apple Il board, there is a metal connector marked “VIDEOQ™,
This connector allows you to attach a cable between the Apple and a closed-circuit video monitor,
One end of the connecting cable should have a male RCA phono jack to plug into the Apple, and

the other end should have a ible with the icular device you are using. The
signal that comes out of this connector on lhe .'\nple is similar to an Electronic Industries Associ-
ation (EIA) dard, National Televisi C i (NTSC) i positive

composite color video signal. The level of this signal can be adjusied from zero to | volt peak by
the small round potentiometer on the right edge of the board about three inches from the back of
the board,

A non-adjustable, 2 volts peak version of the same video signal is available in two other places:
on a single wire-wrap pin® on the left side of the board about two inches from the back of the
board, and on one pin of & group of four similar pins also on the left edge near the back of the
board. The other three pins in this group are connected to —5 volts, +12 volts, and ground.
See page 97 for a full description of this auxiliary video connector.

* This pin is a0t present in Apple [sysiems with the Revision B board.

jumper pads

Photo 5. Eurapple (50 hed Jumper Pads.

numbers, special symbaols

Text. T can display 24 lines
with 40
and §

dot high space above each ling

ers are formes
n either side of the

2. There

yred squares in an array
o of each block can from a set of sixie
that any two adjacent blocks of the

1 present 1,920 co

I} Low-Resolution Graphics
cks wide and

be selecte

There is n

1 single,

Resolution Graphics. The Apple can also display cole

h s dots are the same size as the dots which make up the
s available in the High-Resolution Graphics mode: black, white, red.
” L on the screen can be either black, white,

Each d
able for every

¢, g
although not all c

ion 1

€ SCT

ar type of informs

¢ words and nu

bers on the scree

red

Similarly, il you see a screes

be assured that
ve a four

blocks, your com wn Graphics mode. You ¢
line **caption™ se of graphics screen, The s replace

Apples with Revision

Auxiliary Video
DOutput Connector

Auxiliary Video Pin

Level Adjustment
Potentiometer

S y— Color Trim
Adjustment

Photo 4. The Video Connectors and Potentiometer.

EURAPPLE (50 HZ) MODIFICATION

Your Apple can be modified to generate a video signal compatible with the CCIR standard used
in many European countries. To make this modification, just cut the 1iwo X-shaped pads on the
right W the board about nine inches from the back of the board, and solder together the
three O-shaped pads in the same locations (see photo 51 connect the video con
of your Apple to a European standard > or color video moni-
tor. If you wish, you can obiain a **Eurocolor™ encoder o convert the video signal into a PAL or
SECAM standard color television signal suitable for use with any European television receiver,
ard which plugs into the rightmaost peripheral slot (slot 7)
in your Apple and connects to the single auxiliary video oulput pin

necto

wsed-circuit

et is a small printed circuil b

WARNING: This modification will void the warranty on vour Apple and requires
the installation of a different

in ervstal. This modific

on is not for beginners.

SCREEN FORMAT

Three different kinds of information can be shown on the video display to which your Apple is
connected

10

the lower 8 rows of blocks in Low-Resolution Graphics, leaving a 40 by 40 array. High-
Resolution Graphics, they replace the bottom 32 rows of dots, leaving a 280 by 160 matrix. You
can use these “‘mixed modes’ 1o display 1ext and graphics simultancously, but there is no way 1o
display both graphics modes al the same tlime

SCREEN MEMORY

The video display uses informaiion in the system’s RAM memory 1o generate its display. The
value of a single memory location controls the appearance of a certain, fixed object on the screen.
This object can be a character, two stacked colored blocks, or a line of seven dots. In Text and
Low-Resolution Giraphics mode, an area of memory conta ing 1.024 locations is used as the
source of the screen ion. Text and Low-Resol Graphics share this memory area. In
High-Resolution Cirapl mode, a separate, larger area (8,192 locations) is needed because of
the greater amount of information which is being displayed. These areds. of memory are usually
called ““pages’. The area reserved for High-Resolution Graphics is called the “picture
buffer” because it is commonly used to store a picture or drawing

SCREEN PAGES

There are actually wo areas from which cach mode can draw its information. The first area is
called the “primary page’ or “Page 1"*. The second area is called the “secondary page™ or
““Page 2 and is an area of the same size immediately following the first area. The secondary
page is uselul for storing pictures or text which you want to be able to display instantly, A pro-
gram can wuse the two pages 1o perform animation by drawing on onc page while displaying the
other and suddenly Ripping pages.

Text and Low-Resolution Graphics share the same memory range for the secondary page, just as
they share the same range for the primary page. Both mixed modes which were described above
are also available on the secondary page, bul there is no way to mix the two pages on the same
sereen,

Table 4: Video Display Memory Ranges
Begins at: Ends al:
e P Hek . Decima
Text/Lo-Res Primary Sa 1824 STFF 287
Secondary SR 2R SBFF @71
Hi-Res. Primary S2iM8 R192 SIFFF 16383
Secondary S4BPB 16384 SSFFF 24575

SCREEN SWITCHES

The devices which decide between the various modes, pages, and mixes are called “soft
swilches™. They are switches because they have two positions (for example: on or off, text or
graphics) and they are called “'sofi”™ because they are controlled by the sofiware of the computer.

A program can “‘throw™ a switch by referencing the special memory location for that switch, The
data which are read from or written 1o the location are irrelevant: it is the reference fo the address
of the location which throws the switch,

There are eight special memaory locations which control the setting of the soft switches for the
screen. They are set up in pairs; when you reference one location of the pair you turn its
corresponding mode “on” and its companion mode “ofl™". The pairs are:

Table 5: Screen Soft Switches

| Location:

Hex Deecimal
SCP5M 49232 16384 Display o GRAPHICS mode.
SCASI 49233 16303 Display TEXT mode,]
SCRS2 49234 -16382 Display all TEXT or GRAPHICS.
5 49235 -16301 Mix TEXT and a GRAPHICS mode.”

Description:

SCR 49236 -1630@ Display the Primary page (Page 1).

SCWSS 49237 -16299 Display the y page (Puge 2).
SCHS6 49238 -16298 Display LO-RES GRAPHICS mode.”
SCOST 49239 =16297 Display HI-RES GRAPHICS mode.®

There are ten distinel combinations of these switches:

Table 6: Screen Made Combinations

Primary Page Secondary Page

Screen Switches || Sereen Swilches
All Text SCRS4 SCRS1 | All Temt SCH55 SORs]
All Lo-Res SCWS4 SCWS6 | All Lo-Res SCO55 SCHS6
Giraphics SC#52 SCMS | Graphics SCB51 SCAse
All Hi-Res SC@S4 SCBST | AllHi-Res SC@55 SCBS7
Giraphics SCWS2 SCASH | Graphics SCB52 SCASe
Mixed Text SCH#54 SCB56 || Mixed Text SC@35 SCASH
and Lo-Res $C@S3 SCOSP | and Lo-Res SC833 SCAS@
SC@54 SCPST || Mixed Text SC@S5 SCBS7
SCP53 SCPSB || and Hi-Res SCHS3 SCRSH

{Those of you who are learned in the ways of binary will immediately cry out, *"Where's the
other six®!™", knowing full well that with 4 1wo-way switches there are indeed siveen possible
combinations. The answer 10 the mystery of the six missing modes lies in the
TEXT/GRAPHICS switch. When the computer is in Text mode, it can also be in one of six
combinations of the Lo-Res/Hi-Res graphics mode, “mix™ mode, or page selection. But since
the Apple is displaying text. these different graphics modes are invisible. }

To set the Apple into one of these modes, a program needs only 1o refer to the addresses of the
memary locations which correspond 1o the switches that set that mode. Machine language pro-
grams should use the hexadecimal addresses given above; BASIC programs should PEEK or
POKE their decimal equivalents (given in Table 5, “Screen Soft Switches', above). The
switches may be thrown in any order; however, when switching into one of the Graphics modes,
it is helpful 10 throw the TEXT/GRAPHICS switch last. All the other changes in mode will then
tuke place invisibly behind the text, so that when the Graphics mode is set, the finished graphics

* These modes are only vissble if the “Dsplay GRAPHICS” switch is “on™

THE TEXT MODE

in PROM on

Appie Intelligen

Photo 6 shows the sixty-four chars

- DEFGHI JKLMHMN
STUUMW A

Phato 6. The Apple Character Set.

al and hexadecimal codes for the 64 characiers in normal, inverse, and

ASCII Screen Characters

Table 7

AR i M A e
2
:

SEE - v -~k o o~
Eeomwmieroezern———
= gfle<svupowLyT~~x2xJE2Z0C

E
3
* L2 EBes—rnmeworans VoA
2E - mwFEa -+ |~
|2 EleoxwmFOrERN———
H
‘legle<covpuwupT—mxazEzo
P A I SNl A
g.sg — B FE - - = s 4 | ~
Tl lleoewrorERrN———
1 f@couoUuL 0= aE20
2Re—~rmmevner®mo N A
Eﬁﬁ - o FHg -~ s+ | -
£
T2l uvirorE R N— - —
sflecoupowEUT—~xxaZZ0
Z AR I RRSASIRHEHY
-Gl b e Bt g - i o i

[Decimal

Table 7. ASCII Screen Character Set

1024
1152
1280
1498
1536
1664
1792
1920
1864
1192
1320
1448
1576
1704
1832
1968
1104
1232
1368
1488
1616
1744
1872
2000

$3EIAR4588

P TN L A
sBARRRSESSZ55E8

LIt

s
SIE

»
»

317
kil

M

3

LU+

s
s

§21

n

£

Figure 1. Map of the Text Screen

16

Figure 1 is a map of the Apple’s display in Text mode, with the memory location addresses for
each character position on the screen.

THE LOW-RESOLUTION GRAPHICS (LO-RES)
MODE

In the Low-Resolution G

phics mode, the Apple presents the contents of the same 1,024 loca-
tions of memory as is he Text mode, but in a different format. In this mode, each byte of
memaory is displayed not as an ASCII character, but as two colored blocks, stacked one atop the
other. The screen can show an array of blocks 40 wide and 48 high. Each block can be any of
sixteen colors. On a black-and-white television set, the colors appear as patterns of grey and
white dois.

Since each byle in the page of memory for Low-R ion Giraphics rer two blocks on the
screen, stacked vertically, each byte is divided into two cqual sections, called (appropriately
enough) “nybbles”. Each nybhle can hold a value from zero to 15. The value which is in the
lower nyhble of the byte determines the color for the upper block of that byte on the screen, and
the value which is in the upper nybble determines the color for the lower block on the screen,
The colors are numbered zero 10 15, thus:

Table §: ion Graphics Colors
Decimal Hex C© Decimal Hex Color
[] S0 Black B S8 Brown
1 51 Magenta 9 §9 Orange
1 82 Dark Blue 1] SA Grey2
3 53 Purple 11 SB Pink |
4 54 Dark Green 12 SC Ligh Green
5 35 Grey | 13 3D Yellow
6 56 Medium Blue 14 SE Aguamarine
7 57 Light Blue 15 SF White

(Colors may vary from television to television, particularly on those without hue controls. You
can adjust the tint of the colors by adjusting the COLOR TRIM control on the right edge of the
Apple board,)

S0, u byte containing the hexadecimal value SD8 would appear on the screen as a brown block on
top of a vellow block, Using decimal arithmetic, the color of the lower block is deter
the quotient of the value of the byte divided by 16; the color of the upper block is determined by
the remainder.

Figure 2 is 4 map of the Apple’s display in Low-Resolution Graphics mode, with the memaory
location addresses for each block on the screen.

Since the Low-Resolution Graphics screen displays the same area in memory as is used for the
Text screen, interesting things happen if' you switch between the Text and Low-Resolution
Graphics modes. For example, if the screen is in the Low-Resolution Graphics mode and is full
of colored blocks, and then the TEXT/GRAPHICS screen switch is thrown to the Text mode, the
screen will be filled with seemingly random text characters, sometimes inverse or flashing. Simi-
larly, a screen full of text when viewed in Low-Resolution Graphics mode appears as long hor-
izontal grey, pink, green or yellow bars separated by randomly colored blocks.

17

R55R3545585585553

s
525

»

18

Figure 2. Map of the Low-Resolution Graphics Mode

s400 1024 11 T

s489 1152 | !

S50 1280 e

s580 1408

s6e 1536

S680 1664

sT0 1792 i

s780 1920

5428 1864

S4A8 1192

§528 1320

$5A8 1448

$628 1576

S6A8 1704 !

§728 1832

STASR 1960

S450 1184 Ll

$4D9 1232

§550 1360

$5D@ 1488]

$658 1616 !

s6D@ 1744 HH H
§750 1872 0 -
STD0 2000 priiinn o

THE HIGH-RESOLUTION GRAPHICS (HI-RES)
MODE

The Apple has a second type of graphic display, called High-Resolution Graphics {or

“Hi-res™). When your Apple is in the High-Resolution Graphics mode, it can display 53,760
dots in a mairix 280 dots wide and 192 dots high. The screen can display black, white, violer,
green, red, and blue dots, although there are some limitstions concerning the color of individual
dots.

The High-Resolution €

hics mode takes its data from an 8, 192-byte area of memory, usually
called a **picture buf] . There are two separate picture buffers: one for the primary page and
one for the secondary pay Both of these buffers are independent of and se e from the
memory areas wsed For Text and Low-Resolution Graphics. The primary page picture buffer Tor
the High-Resolution Ciraphics mode begins at memeory location number 8192 and extends up (o
location number 16383 the secondary page picture buffer follows on the hecls of the first at
memaory location number 16384, extending up to location number 24575, For those of you with
sixteen fingers, the primary page resides from S28848 1o $IFFF and the secondary page follows in
succession al S4008 10 SSFFF. IT your Apple s equipped with 16K (16,384 bytes) or less of
memaory, then the secondary page is inaccessible 1o you: il its memory size is less than 16K, then
the entire High-Resolution Graphics mode is unavailable 1o you,

Each dot on the screen represents one bit from the picture bulfer. Seven of the cight bits in each
byte are displayed on the screen, with the remaining bit used 1o select the colors of the dots in
that byte. Forty bytes are displayed on each line of the screen. The least significamt bt (first bit)
of the first byte in the line is displayed on the lefi edge of the screen, followed by the second bit,
then the third, etc. The most significant feighth) bit is not displayed. Then follows the first bit
of the next byte, and so on. A total of 280 dots are displayed on each of the 192 lines of the
sereen,

On a black-and-white monitor or TV set, the dots whose corresponding bits are “*on”" lor equal 10
1) appear white: the dois whose corresponding bits are “ofl™ or {equal to) appear black. On a
color monitor or TV, it is not so simple. 1T a bit is “off", its corresponding dot will always be
black, Ifa s “on”", however, its color will depend upon the pesivion of that dot on the screen
If the dot is in the leftmost column on the screen, called “column @, or in any even-numbered
column, then it will appear violer. IF the dot is in the righimost column (column 279) or any
odd-numbered column, then it will appear green, IF two dots are placed side-by-side, they will
both appear white, If the undisplayed bit of a byie is turned on, then the colors blue and red are
substituted for violet and green, respectively,® Thus, there are six colors available in the High-
Resolution Graphics mode, subject to the following limitations:

I} Dots in even columns must be black, violet, or blue.
21 Dots in odd columns must be black, green, or red.

3} Each byle must be either a violet/green byte or a blue/red byte. 1 is not possible to mix
green and blue, green and red, violel and blue, or violet and red in the same byte.

* On Revision # Apple boards, the colors red and blue are unavailable and the setting of the cighth bit is ir-
relevant

4} Two colored dots side by side always appear white, even if they are in different byies.

5} On European-modified Apples, these rules apply but the colors generated in the High-
Resolution Graphics mode may differ.

Figure 3 shows the Apple’s display screen in High-Resolution Graphics mode with the memory
addresses of cach line on the screen.

OTHER INPUT/OUTPUT FEATURES

Apple Input/Output Features

Inputs: Cassette Input
Three One-bit Digital Inputs |
Four Analog Inputs |

Outputs: Cassette Output
Buili-In Speaker

THE SPEAKER

Inside the Apple’s case, on the lef side under the keyboard, is a small B ohm speaker. 1t is con-
necied to the internal elecironics of the Apple so thal a program can cause it to make various
sounds.

The speaker is controlled by a soft switch. The switch can put the paper cone of the speaker in
two positions: *in”" and “out”. This soft switch is not like the soft switches controlling the vari-
ous video modes, but is instead a reggle switch. Each time a program references the memory
address associated with the speaker switch, the speaker will change state: change from “in™" 10
“out” or vice-versa. Each time the state is changed, the speaker produces a tiny “‘click™. By
referencing the address of the speaker switch frequently and continuously, a program can gen-
erate a steady tone from the speaker,

The soft switch for the speaker is associated with memory location number 49280, Any reference
1o this address (or the ival dd 16336 or hexadecimal SCOIR) will cause the speaker
Lo emit a click.

A program can “‘reference’” the address of the special location for the speaker by performing a
“read” or “write” operation to that address. The data which are read or written are irelevant, as
it is the address which throws the switch. Note that a “write” operation on the Apple’s 6502
microprocessor actually performs a “‘read™ before the “write™, so that il you use a “write™
operation 10 flip any soft switch, you will actually throw that switch mwice. For toggle-iype soft
switches, such as the speaker switch, this means that a “write” operation to the special location

0

U335 saydessy uoynjosay-yAH) jo dey g andyy

WIS BIIL 8916
LT TE S L — L
oris Bois | —] 7168
MRS G60r —J PALE
M09S Tuee [9598
dosas wror [E147]
s rIal [
els o[] ILTR

[—_— 8716

ILBR
FriB
9198
BEYE
2958
[4xs]
ER06

iR
riLE
9L58

(4]
1618

by e o A e
R e ek

=
$ESSSTINIIERENEESNENEEEESE

BE
L
i
%
i3
i
i
o
1
[
s
Hi
L
st

i1
a
st
LisY
s
s

!
!

I

I

I

i

i
vig

21

To obeain ihe mbdress foe any byle, 584 the wideesses for that Byie's Box row, hox codumn, and position in bon

conirolling the switch will leave the switch in the same state it was in before the operation was
performed.

THE CASSETTE INTERFACE

On the back edge of the Apple’s main board, on the right side next to the VIDEQ connector, are
two small black packages labelled “IN' and “OUT"". These ure miniature phone jacks into which
vou can plug a cable which has a pair of miniature phono plugs on each end, The other end of
this cable can be connected 1o a standard cassette tape recorder so that vour Apple can save infor-
mation on audio cassetie tape and read it back again.

The connector marked “OUT™ is wired 1o yet another sofl switch on the Apple board, This
another toggle switch, like the speaker switch (see abovel. The soft switch for the cassette out-
pul plug can be toggled by rel’ercm.-in; memaory location number 49184 (or the equivalent -16352
or hexadecimal SCO28). Ref, g this location will make the voltage on the OUT connector
swing from zero to 25 millivolts f:vne fortieth of a volt), or return from 25 volts back 1o
zero. If the other end of the cable is plugged into the MICROPHONE input of a casselle tape
recorder which is recording onto a tape, this will produce a tiny “click™ on the recording. By
referencing the memory location associated with the cassette output soft switch repeatedly and
frequently, a program can produce a tone on the recording. By varying the pitch and duration of
this tone, information may be encoded on a tape and saved for later use. Such a program 1o
encode data on a tape is included in ihe System Menitor and s described on page 46.

Be forewarned that if you attempt to flip the soft switch for the cassette output by writing to its
special location, you will actually generate mwo *“clicks’™ on the recording. The reason for this is
mentioned in the description of the speaker {above). You should only use “read™ operations
when toggling the casseile outpul soft switch,

The other connector, marked “IN", can be used to “listen’” to a cassetie tape recording, Iis
main purpose is 1o provide a means of listening 10 lones on the tape, decoding them into data,
and storing them in memory. Thus. a program or data set which was stored on cassette tape may
be read back in and used again.

The input circuit takes a | volt {peak-10-peak) signal from the cassette recorder’s EARPHONE
Jack and converts it into a siring of ones and zeroes. Each time the signal applied 1o the input
circuit swings from positive 1o negative, or vice-versa, the input circuil changes state: if it was
sending ones, it will stan sending zeroes, and vice versa. A program can inspect the state of the
cassetie input circuit by looking at memory location number 49248 or the equivalents -16288 or
‘hexadecimal SCA6M. 1F the value which is read from this location is greater than or equal to 128,
then the state is a “one’"; if the value in the memory location is less than 128, then the state is a
“zero’’. Although BASIC programs can read the state of the cassette input circuit, the speed of a
BASIC program is usually much too slow to be able to make any sense out of what it reads.
There is, however, a program in the System Monitor which will read the tones on a cassette lape
and decode them. This is described on page 47,

THE GAME 1/0 CONNECTOR

W you 1o connect special input and output dev-
This conngc-

purpose of the Game /0 connector is
the effect of prog s in general, and specifically, game programs
tor allows you to connect three one-hit inputs, four one-bit outputs, a data strobe, and four ana-
the Apple. all of which can be controlled by your programs. Supplied with your
ch are connected o cables which plug into the Game 1/0
rollers are connected to two analog inputs on the
=-bit inputs

log inputs 1
Apple is a pair of CGam
connector. The two rotary o
o + the two pushbutions

nirollers w
s on the C
e connected 1o two of the or

nn

e 170 Connector.

Phaoto 7. The €

ANNUNCIATOR OUTPUTS

The Tour one-bit outputs are called “annunciators’. Each annunciator oulpul can be used as an
inpul lo some other electronic device, or the annunciator outputs can be connected 1o circuils to
drive lamps, relays, speakers, etc

The addresses of the soft switches for the annun-
If you reference the first

Each annunciator is controlled by a soft switch
ciators are arranged into four pairs, one pair for each annunciator,
« ¥ou turn the output of its corresponding annunciator “off™; if you reference the
& pair, you turn the annunciater’s output “‘on’’. When an annunciator is

address in a
second address in

“off”, the voltage on its pin on the Game 1/0 Connector is near 0 volis; when an annunciator is
“on’, the voltage 1 near 5 voltis. There are no inherent means to determing the current selling
of an annunciator bit. The annunciator soft switches are:

1 off 49242 -16294 SCHSA
_on 49243 -16293 SCHSE
2 off 4‘}244 -16292 SCWSC
on 49245 16291 SCRSD

3 off 49246
on 49247 -16289 SCHSF

ONE-BIT INPUTS

The three one-bit inputs can esch be connected 1o either another electronic device of 1o a push-
bution, You can read the state of any of the one-bit inputs from a machine language or BASIC
program in the same manner as you read the Cassette Input, above. The locations for the three
one-hit inpuis have the addresses 49249 through 49251 (-16287 through -16285 or hexadecimal
SCH61 through SCA6E3).

ANALOG INPUTS

The four analog inputs can be connected to 150K Ohm variable resistors or potentiometers. The
variable resistance between cach input and the +35 volt supply i used in a one-shot timing cir-
cuil. As the resistance on an input varics, the timing ch. ics of its ing timing
circuit change ingly. Machine gr can sense the changes in the timing loops
and oblain a numerical value corresponding 10 lhc position of the polentiometer.

Before a program can start 1o read the setting of a potentiometer, it must first reset the timing
circuil number 49264 (-16272 or hexadecimal SCATR) does just this. When you reset
the timing circuits, the values contained in the four locations 49252 through 49255 (-16284
through 16281 or SCB64 through SCB6T) become greater than 128 (their high bits are set).
Within 3.060 milliseconds, the values contained in these four locations should drop below 128,
The exact time it takes for each location to drop in value is directly proportional to the setting of
the game paddle associated with that location. Il the poentiometers connected 1o the analog
inputs have a greater resistance than 150K Ohms, or there are no potentiometers connected, then
the values in the game controller locations may never drop 1o zero.

4

STROBE OUTPUT

There is an additional output, called CBI® STROBE, which is normally +35 volis but will drop 1o
zero volts for a duration of one-half microsecond under the control of a machine language or
BASIC program. You can trigger this “strobe™ by referring 1o location number 49216 (-16320 or
SCMF). Be aware that if you perform a “write” operation 1o this location, you will trigger the
strobe fwice [see a description of this phenomenon in the section on the Speaker).

l; Table 102 Input/Output Special Locations
Function: Addrsss Read/Write

_ Decimal Hex
; [49200 16336 SCeI8 | R
| Casscrie Out | 49184 -16352 SCBI@ | R

Cusseite In 49256 -16288 SCR6R R
Annunciators” | 49248 -16296 SC#58 | R/W
through through through
49247 16289 SCHSF

Flag inputs 49249 -16287 SC@61 R
49258 -16286 SC862 R
49251 -16285 SCP63 R
Analog Inpuis | 49252 -16284 SCP64 R
49253 -16283 SC@6S
49254 -16282 SC66
| 49255 -16281 SC#67

| Analog Clear | 49264 16272 SC@TH R/W

Utility Strobe [m’m G163 SO | R

VARIETIES OF APPLES

There are a few variations on the basic Apple 11 compuler, Some of the variations are revisions
or modif ns of the computer itsell; others are changes to its operating sofiware. These are
the busic variations:

AUTOSTART ROM / MONITOR ROM

All Apple 1 Plus Systems include the Autostart Monitor ROM. All other Apple systems do not contain
the Autostart ROM. but instead have the Apple System Monitor ROM. This version of the ROM
Lacks some of the features present in the Autostart ROM, but also has some features which are not
present in that ROM. The main differences in the two ROMs are listed on the Tollowing pages,

* Sex the previous table

5

» Editing Controls, The ESC-1, J, K, and M sequences, which move the cursor up, left, right,
and down, respectively, are not available in the Old Monitor ROM.

® Stop-List, The Stop-List feature (invoked by a [CTRLS]), which allows you te introduce a
pause into the output of most BASIC or machine language programs or listings, is not available
in the Old Monitor ROM.

® The RESET cycle. When you first turn on your Apple or press [RESET]. the Old Monitor
ROM will send you directly into the Apple System Monitor, instead of initiating 4 warm or
cold start as described in **The RESET Cycle™ on page 36.

The O1d Monitor ROM does, however, support the STEP and TRACE debugging features of the
System Monitor, described on page 51, The Autostart ROM does not recognize these Monitor
commands.

REVISION # / REVISION 1 BOARD

The Revision @ Apple 11 board lacks a few features found on the current Revision | version of
the Apple 11 main board. To determine which version of the main board is in your Apple, open
the case and look at the upper right-hand corner of the board. Compare what you see to Photo 4
on page 10, I your Apple does not have the single metal video connector pin between the four-
pin video and the video i . then you have a Revision @ Apple.

The differences between the Revision @ and Revision | Apples are summarized below

Color Killer. When the Apple's Video Display is in Text mode, the Revision @ Apple board
leaves the color burst signal active on the video output circuit. This causes text characters lo
appear tinted or with colored fringes.

-

Power-on RESET. Revision @ Apple boards have no circuit (o a omatically initiate a RESET
cycle when you turn the power on. Insiead, you must press RESET] once to starl using your
Apple.

Also, when you turn on the power to an Apple with a Revision @ board, the keyboard will
become active, as if you had typed a random chatacter. When the Apple starts looking for
input. it will accept this random character as if you had typed it In order 10 erase this charac-
ter, you should press (.‘rng_! after you [RESET] vour Apple when you turn on ils power.

® Colors in High-Resolution Graphics. Apples with Revision @ boards can generate only four
colors in the High-Resolution Graphics mode: black, white, violet, and green. The high bit of
cach byte displayed on the Hi-Res screen (see page 19) is ignored.

24K Memory Map problem. Systems with a Revision @ Apple 11 board which contain 20K or
24K bytes of RAM memory appear to BASIC to have more memory than they actually do.
See *“Memory Organization’, page 72, for a description of this problem.

-

50 Hz Apples. The Revision @ Apple 11 board does not have the pads and jumpers which you
can cut and solder 1o convert the VIDEQ OUT signal of your Apple to conform to the Euro-
pean PAL/SECAM television standard. 1t also lacks the third VIDEQ connector, the single
metal pin in front of the four-pin video connector.

%

® Speaker and Cassette Interference. On Apples with Revision @ boards, any sound generated
by the internal speaker will also appear as a signal on the Cassette Interface’s OUT connector.
I you leave the tape recorder in RECORD mode, then any sound generated by the internal
speaker will also appear on the tape recording

® Cassette Input. The input circuit for the Cassette Interface has been modified so that it will
respomnd with more accuracy 1o a weaker input signal,

POWER SUPPLY CHANGES

In addition, some Apples have a version of the Apple Power Supply which will accept only a 110
volt power line input. These are are not equipped with the voltage selector switch on the back of
the supply.

THE APPLE II PLUS

The Apple 11 Plus is a standard Apple 11 computer with a Revision 1 board, an Autostart Moni-
1or ROM, und the Appilesoft 11 BASIC language in ROM in lieu of Apple Integer BASIC. Euro-
pean models of the Apple 11 Plus are equipped with & 110/220 volt power supply. The Apple
Mini-Assembler, the Floating-Point Package, and the SWEET-16 interpreter, stored in the
Integer BASIC ROMs, are not available on the Apple 11 Plus.

7

STANDARD OUTPUT

THE STOP-LIST FEATURE

BUT SOFT, WHAT LIGHT THROUGH YONDER WINDOW BREAKS!
{OR, THE TEXT WINDOW)

SEEING IT ALL IN BLACK AND WHITE

STANDARD INPUT

" RDKEY

GETLN

ESCAPE CODES

THE RESET CYCLE

AUTOSTART ROM RESET

AUTOSTART ROM SPECIAL LOCATIONS
“OLD MONITOR' ROM RESET

3

Almost every program and language on the Apple needs some sort of input from the keyboard,
and some way to print information on the screen. There is a set of subroutines stored in the
Apple's ROM memory which handle most of the standard input and output from all programs
and languages on the Apple.

The subroutines in the Apple’s ROM which perform these input and output functions are called
by various names, These names were given to the subroutines by their authors when they were
written. The Apple itsell does nol recognize or remember the names of its own machine
language subroutines, but it’s convenient for us to call these subroutines by their given names.

STANDARD OUTPUT

The standard output subroutine is calied COUT. COUT will display upper-case letters, numbers,
and symbols on the screen in either Normal or Inverse mode. It will ignore control characters
excepl RETURN, the bell character, the line feed ch and the back h

The COUT subroutine maintains its own invisible “oulput cursor™ (the pesition at which the
next character is to be placed). Each time COUT is called, it places one character on the screen
at the current cursor position, replacing whatever characier was there, and moves the cursor one
space to the right. If the cursor is bumped off the right edge of the screen, then COUT shifts the
cursor down to the first position on the next line, If the cursor passes the bottom line of the
screen, the screen “'scrolls™ up one line and the cursor is set to the first position on the newly
blank bottom line.

When a RETURN character is sent to COUT, it moves the cursor to the first position of the next
line. If the cursor falls off the bottom of the screen, the screen scrolls as described above.

THE STOP-LIST FEATURE

When any program or language sends a RETURN code 1o COUT, COUT will take a quick peek at
the keyboard. 1f you have typed a [CTRL 5] since the last time COUT looked at the keyboard,
then it will stop and wait for you to press another key. This is called the Smap-List feature.**
When you press another key, COUT will then output the RETURN code and proceed with nor-
mal output. The code of the key which you press 1o end the Stop-List mode is ignored unless it
is a [ETRLC]. If it is, then COUT passes this character code back to the program or language
which is sending output, This allows you 1o terminate a BASIC program or listing by typing
[CTRL C] while you are in Stop-List mode.

A line feed character causes COUT 1o move its mythical output cursor down one line without any
horizontal motion at all. As always, moving beyond the bottom of the screen causes the screen
to scroll and the cursor remains at ils same position on a fresh bottom line.

A backspace character moves the imaginary cursor one space to the left. If the cursor is bumped
off the left edge, it is reset 1o the rightmost position on the previous line. If there is no previous
line (if the cursor was at the top of the screen), the screen does nor scroll downwards, but instead

* From latin cwsas, ““rumner’
** The Stop-list feature is mol present on Apples without the Autostart ROM

30

the cursor is placed again al the righimost position on the top line of the screen.

When COUT is sent a “'bell™ character (CTRL G), it does not change the screen at all, but
instead produces a tone from the speaker. The tone has a frequency of 100Hz and lasts for
1/10th of a second. The output cursor does not move for a bell character,

BUT SOFT, WHAT LIGHT THROUGH YONDER
WINDOW BREAKS!

(OR, THE TEXT WINDOW)

In the above discussions of the various motions of the output cursor, the words “right™”, “‘left”,
“rop™, and ““hollom™ mean the physical right, left, 1op, and bottom of the standard 40-character
wide by 24-line tall screen. There is, however, a way to tell the COUT subroutine that you want
it to use only a section of the screen, and not the entire 360-ch display. This

section of the texi screen is called a “‘window''. A program or language can sei the positions of
the 1op, bottom, lefi side, and widih of the text window by storing those positions in four loca-
tions in memory. When this is done, the COUT subroutine will use the new positions to calcu-
late the size of the screen, It will never print any text outside of this window, and when it must
scroll the screen, it will only scroll the text within the window. This gives programs the power to
control the placement of text, and to protect areas of the screen from being overwritlen with new
text,

Location number 32 (hexadecimal $2@8) in memory holds the column position of the lefimost
column in the window, This position is normally position @ for the extreme lefi side of the
screen. This number should never exceed 39 (hexadecimal 527), the lefimost column on the
text screen. Location number 33 (hexadecimal $21) holds the width, in columns, of the cursor
window, This number is normally 48 (hexadecimal $28) for a full 40-character screen. Be care-
ful that the sum of the window width and the lefimost window position does not exceed 40! 1F it
does, it is possible for COUT to place characters in memory locations not on the screen,
endangering your programs and data.

Location 34 (hexadecimal $22) contains the number of the top line of the text window. This is
also normally @, indicating the topmost line of the display. Location 35 (hexadecimal $23) holds
the number of the bottom line of the screen (plus onel, thus normally 24 (hexadecimal S18) for
the bottommost line of the screen. When you change the text window, you should take care that
you know the whereabouts of the outpul cursor, and that it will be inside the new window,

Table 11: Text Window Special Locations

cunction: | Location: T Minimum/Normal/Maximum Valug
Euatilos: Decimal Hex | Decimal Hex
Lef Edge 32 528 | W39 S8/30/517
Width 3 $21 | 040740 SB/S28/328
Top Edge 4 522 | W24 S8/50/518
Bottom Edge | 35 $23 | 8/24/24 SB/SI8/518

3

SEEING IT ALL IN BLACK AND WHITE

The COUT subroutine has the power to print what's sent to it in either Normal or Inverse text
modes (see page 14). The particular form of its output is determined by the contents of location
number 58 (hexadecimal §32). If this location contains the value 255 (hexadecimal SFF), then
COUT will print characters in Normal mode; if the value is 63 (hexadecial $3F), then COUT will
present its display in Inverse mode. Note that this mode change only affects the characters
printed after the change has been made. Other values, when stored in lecation 59, do unusual
things: the value 127 prints letters in Flashing mode, but all other characiers in Inverse; any
other value in location 5@ will cause COUT 1o ignore some or all of its normal character set.

Table 12: Normal/Inverse Control Values
Value: fect:
Decimal Hex
[255 SFF | COUT will display ch in Normal mode.
63 $3F | COUT will display characters in Inverse mode.
127 $TF | COUT will display letters in Flashing mode, all |
other in Inverse mode. |

The Normal/Inverse “mask’ location, as it is called, works by performing a logical **AND"
between the bits contained in location 58 and the bits in each outgoing character code. Every bit
in location 58 which is a logical “zero™ will force the corresponding bit in the character code to
become “‘zero’ also, regardless of its former setting. Thus, when location 58 contains 63 (hexa-
decimal 53F or binary 88111111), the top two bits of every output character code will be turned
“off". This will place characters on the screen whose codes are all between 0 and 63, As you
can see from the ASCII Screen Character Code table (Table 7 on page 15), all of these characters
are in Inverse mode.

STANDARD INPUT

There are actually two subroutines which are with the ing of standard input:
RDKEY, which fetches a single keystroke from the keyboard, and GETLN, which sccumulates a
number of keystrokes into a chunk of information called an inpur fine.

RDKEY

The primary function of the RDKEY subroutine is to wail for the user to press a key on the key-
board, and then report back to the program which called it with the code for the key which was
pressed. But while it does this, RDKEY also performs two other helpful tasks:

1), dnput Prompting. When RDKEY is activated, the first thing it does is make visible the hid-
den output cursor. This accomplishes two things: it reminds the user that the Apple is waiting
for a key to be pressed, and it also associates the input it wanis with a particular place on the
screen. In most cases, the input prompt appears near 4 word or phrase describing what is being

o by the icular program or ly in use. The input cursor itself is a
Nashing representation of whatever characier was at the position of the output cursor. Usually
this is the blank character, so the inpul cursor most often appears to be a flashing square,

3

When the user presses’ s key, RDKEY duiifully removes the input cursor and returns the
value of the key which was pressed to the program which requesied it. Remember that the
outpul cursor is just a position on the screen, but the input cursor is a Mlashing character on the
screen. They usually move in tandem and are rarely separated from each other, but when the
input cursor disappears, the output curser is still active,

2}, Random Number Seeding. While it waits for the user to press a key, RDKEY is continually
sdding | to a pair of numbers in memory. When a key is finally pressed, these two locations
together represent a number from @ to 65,535, the exact value of which is quite unpredictable
Many programs and languages use this number as the base of a random number generator,
The two locations which are randomized during RDKEY are numbers 78 and 79 (hexadecimal
S4E and 34F).

GETLN

The vast majority of input to the Apple is gathered into chunks called impur fines. The subrouti
in the Apple’s ROM called GETLN requests an input line from the keyboard, and afler getting
one, returns to the program which called it. GETLN has many leatures and nuances, and it is
good 1o be familiar with the services it offers.

When called, GETLN first prints a prompiing characrer, or “‘prompt’”. The prompt helps you 1o
identify which program has called GETLN requesting input. A prompt character of an asterisk
{+) represents the System Monitor, a right caret (>) indicates Apple Integer BASIC, a right
bracket (1) is the prompt for Applesoft 11 BASIC, and an exclamation point (1) is the hallmark of
the Apple Mini-Assembler. In addition, the question-mark prompt (?) is used by many programs
and languages to indicate that a user program is requesting inpul. From your (the user's) point
of view, the Apple simply prints a prompt and displays an input cursor. As you type, the charac-
ters you Iype are printed on the screen and the cursor moves accordingly. When you press

. the entire line is sent off to the program or language you are talking to, and you get
another prompt.

Actually, what really happens is that afier the prompt is printed, GETLN calls RDKEY, which
displays an input cursor. When RDKEY returns with a keycode, GETLN stores that keycode in
an input buffer and prints it on the screen where the input cursor was. It then calls RDKEY again.
This continues until the user presses [RETURN!. When GETLN receives a RETURN code from
the keyboard, it sticks the RETURN code at the end of the input buffer, clears the remainder of
the screen line the input cursor was on, and sends the RETURN code 10 COUT (see above),
GETLN then returns to the program which called it. The program or language which requested
input may now look at the entire line, all at once, as saved in the input buffer,

Al any time while you are typing a line, you can type a and cancel that entire line.
GETLN will simply forget everything you have typed, print a backslash (1), skip to a new line,
and display another prompt, allowing you to retype the line. Also, GETLN can handle a max-
imum of 255 characters in a line. If you exceed this limit, GETLN will cancel the entire line and
you must start over. To warn you thal you are approaching the limit, GETLN will sound a tone
every keypress starting with the 249th character.

GETLN also allows you to edit and modify the line you are typing in order to correct simple
typographical errors. A quick introduction 1o the standard editing functions and the use of the
two arrow keys, [=] and [=], appears on pages 28-29 and 53-55 of the Apple 11 BASIC Program-
ming Manual, or on pages 27-28, 52-53 and Appendix C of The Applesolt Tutorial, a1 least one

33

of which you should have received, Here is a shor description of GETLN's editing features:
THE BACKSPACE ([=]) KEY

Each press of the backspace key makes GETLN ““forget” one previous characier in the input line.
It also sends a backspace character 1o COUT (see above), making the cursor move back to the
character which was deleted. At this point, a character typed on the keyboard will replace the
deleted characier both on the screen and in the input line. Multiple backspaces will delete succes-
sive characters; however, if you backspace over more characters than you have typed, GETLN
will forget the entire line and issue another prompt,

THE RETYPE ([=]) KEY

Pressing the retype key has exactly the same effect as typmg the character which is under the cur-
sor. This is ly useful l'm tering the of a line which you have backspaced
over 1o correct a graphical error. In conjunction with pure cursor moves (which follow), it is

also useful for recopying and editing data which is already on the screen,

ESCAPE CODES

When you press the key marked on the keyboard, the Apple's input subroutines go into
escape mode. In this mode, eleven keys have separate meanings, called *‘escape codes’”, When
you press one of these eleven keys, the Apple will perform the function associated with that key.
After it has performed the function, the Apple will either continue or terminate escape mode,
depending upon which escape code waus performed. If you press any key in escape mode which is
not an escape code, then that keypress will be ignored and escape mode will be terminated.

The Apple recognizes eleven escape codes, eight of which are pure cursor moves, which simply
move the cursor without altering the screen or the input line, and three of which are screen clear
codes, which simply blank part or all of the screen. All of the screen clear codes and the first four
pure cursor moves (escape codes @, A, B, C, D, E, and F) terminate the escape mode after
operating. The final four escape codes (1, K, M, and I} complete their functions with escape
mode active.*

[ESCI[A) A press of the [ESC] key followed by a press of the [K] key will move the cursor one space
to the right without changing the input line. This is useful for skipping wer unwanted

chmclers in an input line: simply back over the press
[ESC] [A] to skip each offending symbol, and use the retype key to re-enter the remainder
of the line.

[ESC] [B] Pressing followed by [B] moves the cursor back one space, also without disturbing

the input line. This may be used to enter something twice on the same ling without
relyping it; just type it once, press [k [B] repeatediy to get back 1o the beginning of the
phrase, and use the retype key to enter it again.

* These four escape codes are not available on Apples without the Autostart Monitor ROM.

[ESC] [C] The key sequence [ESC] [C] moves the cursor one line directly down, with no horizontal
movement. If the cursor reaches the bottom of the text window, then the cursor
remains on the bottom line and the text in the window scrolls up one line. The input
line is not modified by the [ESC][€] sequence. This, and [ESC][D] (below), are useful for
positioning the cursor at the beginning of another ling on the screen. so that it may be
re-eniered with the retype key.

[ESC) [The sequence moves the cursor directly up one line, again without any horizon-
tal movement. If the cursor reaches the top of the window, it stays there. The input
line remains unmodified. This sequence is useful for moving the cursor 1o a previous
line on the screen so that it may be re-entered with the retype key.

[E] The [ESC] [E] sequence is called “clear 1o end of line”. When COUT detects this
sequence of keypresses, it clears the remainder of the screen line (mor the input line!)
from the cursor position to the right edge of the text window, The cursor remains
where it is, and the input line is unmodified. [ESC] [E] always clears the rest of the line o
blank spaces, regardless of the setting of the Normal/Inverse mode location (see above).

[ESC] [F] This sequence is called ““clear 1o end of screen™, It does just that: it clears everything in
the window below or to the right of the cursor. As before, the cursor does not move
and the input line is not modified. This is useful for erasing random garbage on a clut-
tered screen after a lot of cursor moves and editing,

[E] The [ESC] [@] sequence is called “"home and clear’. It clears the entire window and
places the cursor in the upper left-hand corner. The screen is cleared 1o blank spaces,
regardless of the setting of the Normal/Inverse location, and the input line is not

changed (note that “*[&]" is EHIFTP)).

These four escape codes are synonyms for the four pure cursor moves given above.
When these four escape codes finish their respective functions, they do sor turn off the
escape mode: you can continue typing these escape codes and moving the cursor around
the screen until you press any key other than another escape code. These four keys are
placed in a “‘directional keypad'' arrangement, so that the direction of each key from the
center of the keypad corresponds to the direction which that escape code moves the cur-
sor,

-5

B D= -=[E &

A [2] -

Figure 4. Cursor-moving Escape Codes.

35

THE RESET CYCLE

When you turn your Apple's power switch on® or press and release the key, the Apple's
6502 microprocessor initiates a RESET cycle. It begins by jumping into a subroutine in the
Apple's Monitor ROM. In the two different versions of this ROM, the Monitor ROM and the
Autostart ROM, the RESET cycle does very different things.

AUTOSTART ROM RESET

Apples with the Autostart ROM begin their RESET cycles by flipping the soft switches which
control the video screen lo display the full primary page of Texi mode, with Low-Resolution
Graphics mixed mode lurking behind the veil of text. It then opens the text window 1o its full
size, drops the outpul cursor 1o the bottom of the screen, and seis Normal video mode. Then it
sets the COUT and KEYIN swilches to use the Apple’s internal keyboard and video display as the
standard input and output devices. It flips annunciators @ and | ON and annunciators 2 and 3
OFF on the Game 1/0 connector, clears the keyboard strobe, turns off any active 1/0 Expansion
ROM (see page 84), and sounds a “*beep!™.

These actions are performed evety time you press and release the key on your Apple. At
this point, the Autostart ROM peeks into two special locations in memory 1o see if it's been
RESET before or if the Apple has just been powered up (these special locations are described
below). I the Apple has just been turned on, then the Autostart ROM performs a “cold start™;
otherwise, il does a “*warm start’".

1) Cold Start. On a freshly activated Apple, the RESET cycle continues by clearing the screen
and displaying **APPLE 11" top and center. It then sets up the special locations in memory o
tell itself that it"s been powered up and RESET. Then it starts looking through the rightmost
seven slots in your Apple’s backplane, looking for a Disk 1I Controller Card. It starts the
search with Slot 7 and continues down to Slot 1, If it finds a disk controller card, then it
proceeds o bootsirap the Apple Disk Operating System (DOS) from the diskette in the disk
drive attached to the controller card it discovered. You can find a description of the disk
bootstrapping procedure in Do's and Don'ts of DOS, Apple part number A2L0012, page 11.

If the Autostart ROM cannot find a Disk 11 controller card, or you press [RESET] again before
the disk booting procedure has completed, then the RESET cycle will continue with a
“lukewarm start’*. Tt will initislize and jump into the language which is installed in ROM on
your Apple. For a Revision @ Apple, either without an Applesoft 1l Firmware card or with
such a card with its controlling switch in the DOWN position, the Autostart ROM will start
Apple Integer BASIC. For Apple I1-Plus systems, or Revision @ Apple 11s with the Applesoft
11 Firmware card with the switch in the UP position, the Autostart ROM will begin Applesoft
11 Floating-Point BASIC.

2) Warm Start. I you have an Autostart ROM which has already performed a cold start cycle,
then each time you press and release the [RESET] key, you will be returned to the language
you were using, with your program and variables intact,

* Power-on RESET cycles oceur only on Revision | Apples or Revision @ Apples with at lesst ane Disk Il con.
trofler card

AUTOSTART ROM SPECIAL LOCATIONS

The three **special locations™ used by the Autostart ROM all reside in an area of RAM memory
reserved for such system functions. Following is a table of the special locations used by the
Autostart ROM:

Table 13: Autostart ROM 5 | Locations
tion: .
Decimal _Hex Comients:
e $3F2 Soft Entry Vector. These two locations contain
81 S3F3 the address of the reentry point for whatever
language is in use. Normally contains SE083,
1z SiF4 Power-Up Byte. Normally contains 545, See
below.
64367 SFB&6F This is the beginning of a machine language
{-1169) subroutine which seis up the power-up location,

When the Apple is powered up, the Autostart ROM places a special value in the power-up loca-
tion. This value is the Exclusive-OR of the value contained in location 1811 with the constant
value 165, For example, if location 1811 contains 224 {its normal value), then the power-up
value will be:

Decimal Hex Binary
Location 1811 24 SE& 11100008
Constant 165 SAS ld1ealel
Power-Up Value 69 545 dlaeaIel

Your programs can change the soft entry vecior, so that when you press you will go to
some program other than a language. I you change this soft entry vector, however, you should
make sure that you set the value of the power-up hyte to the Exclusive-OR of the high part of
your new soft entry vector with the constant decimal 165 (hexadecimal $A5). If you do not set
this power-up value, then the nexi time you press I'| the Autostart ROM will believe that
the Apple has just been turned on and it will do another cold start.

For example, you can change the soft entry vector to point o the Apple System Monitor, so that
when you press you will be placed into the Monitor, To make this change, you must
place the address of the beginning of the Monitor into the two soft entry vector locations. The
Monitor begins at location $FF69, or decimal 65385, Put the last two hexadecimal digits of this
address ($69) into location $3F2 and the first two digits (SFF) into location $3F3. If you are
working in decimal, put 105 (which is the remainder of 65385/256) into location 1818 and the
value 255 (which is the integer quotient of 65385/256) into location 1811,

Now you must set up the power-up location. There is a machine-language subroutine in the
Autostart ROM which wil automatically set the value of this location 1o the Exclusive-OR men-
tioned above. Al you need 1o do is to execute a JSR (Jump to SubRoutine} instruction 1o the
address SFB6F. If you are working in BASIC, you should perform a CALL -1169. Now every-
thing is set, and the next time you press [RESET |, you will enter the System Monitor.

T key work in its usual way, just restore the values in the soft entry vector to
their former values (SEA3, or decimal 57347) and again call the subroutine described above.

37

“OLD MONITOR” ROM RESET

A RESET cycle in the Apple 1l Monitor ROM begins by setting Normal video mode. a full screen
of Primary Page text with the Col raphics mixed mode behind it, a fully-opened text window,
and the Apple's standard keyboard and video screen as the standard input and output devices. It
sounds a “heep!”’, the cursor leaps to the bottom line of the uncleared text screen, and you find
yoursell facing an asterisk («) prompt and talking to the Apple System Monitor,

L4214 § 1

ENTERING THE MONITOR

ADDRESSES AND DATA

EXAMINING THE CONTENTS OF MEMORY
EXAMINING SOME MORE MEMORY
EXAMINING STILL MORE MEMORY
CHANGING THE CONTENTS OF A LOCATION
CHANGING THE CONTENTS OF CONSECUTIVE LOCATIONS
MOVING A RANGE OF MEMORY
COMPARING TWO RANGES OF MEMORY
SAVING A RANGE OF MEMORY ON TAPE
READING A RANGE FROM TAPE

CREATING AND RUNNING MACHINE LANGUAGE PROGRAMS
THE MINI-ASSEMBLER

DEBUGGING PROGRAMS

EXAMINING AND CHANGING REGISTERS
MISCELLANEOUS MONITOR COMMANDS
SPECIAL TRICKS WITH THE MONITOR
CREATING YOUR OWN COMMANDS
SUMMARY OF MONITOR COMMANDS

SOME USEFUL MONITOR SUBROUTINES
MONITOR SPECIAL LOCATIONS
MINI-ASSEMBLER INSTRUCTION FORMATS

39

Buried deep within the recesses of the Apple’s ROM is a masterful program called ihe Sysiem
Monitor. It acts as both a supervisor of the system and a slave 1o ii: it controls all programs and
all programs wse it. You can use the powerful features of the System Monitor to discover the
hidden secrets in all 65,536 memory locations. From the Monitor, you may look al one, some,
or all H)aalmus you may change the contents of any location; you can write programs in Machine
and A 1o be 1 directly by the Apple’s microprocessor, you can save vast
quantities nf data and programs onlo cassetle tape and read them back in again: you can move
and compare thousands of bytes of memory with a single command; and you can leave the Mom-
tor and enter any other program or language on the Apple,

ENTERING THE MONITOR

The Apple System Monitor program begins at location number SFF6% (decimal 65385 or < 151)
in memory. To enter the Monitor, you or your BASIC program can CALL this location. The
Monitor's prompt (an asterisk [«]) will appear on the lefi edge of the screen, with a fMashing cur-
sor 1o its right. The Monitor accepts standard input lines (see page 32) just like any other system
or language on the Apple. Tt will not take any action until you press [RETURN]. Your input lines
to the Monitor may be up to 255 characters in length. When you have finished your stay in the
Monitor, you can return to the language you were previously using by typing [CTRL C] [RETURN]
th the Apple DOS, [3][D][#][G] RETURN]). or simply press [RESET].*

ADDRESSES AND DATA

Talking to the Monitor is somewhal like talking 10 any other program or language on the Apple:
you type 4 line on the keyboard, followed by a [RET and the Monitor will digest what you
typed and act according 1o those instructions. You will be giving the Monitor three types of
ml‘n"nalmn .anhh'mx mfmx and wmmumk Addresses and values are given 1o the Monitor in
on. decimal notation uses the ten decimal digits (89} 1o represent them-
selves and the first six letters {A-F) to represent the numbers 10 through 15, A single hexade-
cimal digit can, therefore, have one of sixteen values from 0 to 15, A pair of hex digits can
assume any value from 0 1o 255, and a group of Tour hex digits can denote any number from 0 1o
65,536, It so happens that any address in the Apple can be represented by four hex digits, and
any value by two hex digits. This is how you tell the Monitor about addresses und values. When
the Monitor is looking for an address, it will take any group of hex digits. If there are fewer than
four digits in the group, it will prepend leading zeroes; if there are more than four hex digits, the
Monitor will truncate the group and use only the last four hex digits. 1t follows the same pro-
cedure when looking for two-digit data values.

The Monitor gnizes 22 different d ch Some of these are puncluation marks,
others are upper-case letters or control characters. In the following sections, the full name of a
command will appear in capital letiers. The Monitor needs only the first letier of the command
name. Some commands are invoked with control characters. You should note that although the
Maonitor izes and i these a control character typed on an input line will
ol appear on the screen.

* This does not work on Apples without the Autastart ROM

The Monitor the adids s of up o five locati Two of these are special: they are
the addresses of the last location whose value you inguired about, and the location which is next
o have ils value changed. These are called the last opened location and the wext changeable lova-
rion. The usefulness of these two addresses will be revealed shortly,

EXAMINING THE CONTENTS OF MEMORY

When you type the sddress of a location in memory alone on an input line 1o the Monitor, it will
reply® with the sddress you typed, a dash, a spuce, and the value®™ contained in that location,
thus:

«EApp
Edfg— 28
300
Wigg— 99
.

Each time the Monitor displays the value contained in a location, it remembers that location as
the kst opened location. For technical reasons, it also considers that location as the mexr change-
able location.

EXAMINING SOME MORE MEMORY

I you type a period (.} on an input line 1o the Monitor, followed by an address, the Monitor will
display i memory e the values contained in all locations from the last opened location to the
location whose address you typed lollowing the period. The Monitor then considers the last loca-
tion displayed to be both the last opened location and the next changeable location.

* In the examples, your queries are in normsl 1ype and the Apple replies in baldface
** The values printed in these examples may differ from the values dsplayed by your Apple for the same in-
structions

41

18

WHIA— A
= 2B

#H21— 28 W8 18 WF #C @9 B9
WH28— AS #6 DR W7
L]

Bige— 99
+.315

#3iNl— BY @@ #E WA #A #A 99
FigE— W@ BB CB DF F4 A6 2B A9
#31H— 9 B5 17 AD CC #3

* 32A

#316— B5 41

HI1E— B4 48 HA 44 44 4A 4A WY
#328— C# 85 3F A9 5D 85 3E 24
HI2E— 43 #3 28

You should notice several things about the format of a memory dump, First, the first line in the
dump begins with the address of the location followirg the last opened location: second, all other
lines begin with addresses which end alternately in zeroes and eights, and third, there are never
more than eight values displayed on a single line in a memory dump. When the Monitor does a
memaory dump, it starts by displaying the address and value of the location following the last
opened location. 1t then proceeds to the next successive location in memory. If the address of
that location ends in an 8 or a @, the Monitor will “‘cut’ to a new line and display the address of
that location and continue displaying values. After it has displayed the value of the location
whose address you specified, it stops the memory dump and sets the address of both the last
opened and the next changeable location to be the address of the last location in the dump. IT
the address specified on the input line is less than the address of the last opened location, the
Monitor will display the address and value of only the location following the last opened location,

You can combine the two { g and) into one

by
the second 1o the first; that |s type the ﬁrsl uddrtss lollowed by a period and the second address.
This 1 ty-a-period form is called a memory range.

+«30@_32F

L] 99 B B8 UE FA A BA 99
HidE— B8 B3 C3 DF F4 A6 2B A9

#328— C# 85 3F A9 5D 85 3E 29
#328— 43 #3 18 46 #3 AS 3D 4D
3@ 40

+E@15 E®25

42

E#15— 4C ED FD
E#18— A9 18 C5 14 BP BC A9 3D
E#28— AF #7 24 ED FD A%

EXAMINING STILL MORE MEMORY

A single press of the [RETURN] key will cause the Monitor to respond with one line of a memory
dump; that 15, a memory dump from the location following the last opened location to the next
eight-location “cut™. Once again, the It location displaved is considered the last opened and
next changeable location

L S 1]
*[RE N]

[
+[RETURN]

HHHE— HE B0 BE AR B0 BE WA W
32

WHi2— FF
+[RETURN]
AA B C2 W5 C2
+[RETURN]

H#38— 1B FD D# #3 3C #@ 3F &9

CHANGING THE CONTENTS OF A LOCATION

You've heard all about the “next changeable location™; now you're going to use it. Tyvpe a
colon followed by a value.

i)

Hed— W
»:5F

Presio! The contents of the next changeable location have just been changed to the value you
typed. Check this by examining thal location again:

HEdE— SF

43

You can also combine opening and changing into one operation

=302:42
182
Wig2— 42

.

When you change the contents of a location, the old value which was contained in that location
disappears, never 1o be seen again. The new value will stick around until it is replaced by anoiher
hexadecimal value.

CHANGING THE CONTENTS OF
CONSECUTIVE LOCATIONS

You den T have 1o type an address, a colon, a value, and press [RETURN] lor each and every loca-
tion vou wish 10 change, The Monitor will allow you 1o change the values of up 1o eighty-five
locations al 4 time by typing only the initial address and colon, and then all the values separaied
by spaces. The Monitor will duly file the consecutive values in consecutive locations, starting at
the next changeable location. After it has processed the string of values, it will assume that the
location following the last changed location is the next changeable location, Thus, you can con-
tinue changing consecutive locations without breaking stride on the next input linc by typing
another colon and more values.

«300:69 @1 28 ED FD 4C @ 3
BEIT]

Widd— 69

«[RETURN

¥1 2# ED FD 4C W@ @3
«19:8 1 2 3

«:4 567

«108.17

WR1F— BF B1 W2 B3 B4 H5 Ho6 T
.

MOVING A RANGE OF MEMORY

You can treal a range of memory (specified by 1wo addresses separated by a period) as an enlily

unti itsell and move it from one place 1o another in memory by using the Monitor's MOVE
command. In order to move a range of memaory from one place to another, the Monitor must be
told both where the range is situated in memory and where it is 1o be moved. You give this
information to the Monitor in three parts: the address of the destination of the runge, the
address of the first location in the range proper, and the address of the last location in the range.
You specily the starting and ending addresses of the range in the normal fashion, by separating
them with a period. You indicate that this range is to be placed somewhere else by separating the
range and the destination address with a left caret (<), Finally, you tell the Monitor that you
want 1o move the range 1o the destination by typing the letter M, for “MOVE"”, The final com-
mund looks like this:

Idestination] < {swrt) . lend] M
When you type this line 10 the Monitor, of course, the words in curly brackets should be replaced

by hexadecimal addresses and the spaces should be omined. Here are some real examples of
MEMOry maoves:

LERUEI | LI]
WHEE— HA #A A0 W AE HH A AW
«3100:A9 8D 20 ED FD A% 45 28 DA FD 4C @8 83

300 _38C

] = A% HD 20 ED FD A9 45 29
HidE— DA FD 4C #8 #3
«R<308 . I8CM

“8.C

PREE— AD BD I8 ED FD A9 45 28
PREE— DA FD 4C #A #3
#310<8 . AM

319,312

#318— DA FD 4C
»2<7 . 9M

A% BD 1# DA FD A9 45 14
DA FD 4C #8 93

The Monitor simply makes a copy of the indicated range and moves it to the specified destina-
tion, The original range is left undisturbed. The Monitor remembers the last location in the ori-
ginal range as the last opened location, and the first location in the original range as the next
changeable location. If the second address in the range specification is less than the first, then
only one value (that of the first location in the range} will be moved.

If the destination address of the MOVE command is inside the original range. then strange and
{sometimes} wonderful things happen: the locations beiween the beginning of the range and the

45

destination are treated as a sub-range and the values in this sub-range are replicated throughout
the original range. See ““Special Tricks™, page 55, for an interesting application of this feature.

COMPARING TWO RANGES OF MEMORY

You can use the Monitor to compare two ranges of memaory using much the same Tormal 45 you
use Lo move a range of memory from one place 1o snother, In fact, the VERIFY command can
be used immediately alter a MOVE o make sure that the move was successful.

The VERIFY command, like the MOVE command, needs a range and 4 destination. In short-
hand:

[destination] < [start] . [end] ¥

The Monitor compares the range specified with the range beginning at the destination sddress. 1f
there is any discrepancy. the Monitor displays the sddress a1 which the difference was found and
the two offending values.

«#:D7 F2 E9 F4 F4 E5 EE AB E2 F9 A® C3 C4 C§

3P0<@ . DM

«3pd<p DV

=6:E4

«3@8<d. DV

WER6—E4 (EE)
Notice that the VERIFY command, if it finds a discrepancy, displays the address of the location
in the original range whose value differs from its counterpart in the destination range. I there is
no discrepancy, VERIFY displays nothing. 1t Jeaves both ranges unchanged. The last opened and
next changeable locations are sel just as in the MOVE command. As before, if the ending
address of the range is less than the starting address, the values of only the locations in the

ranges will be compared. VERIFY also does unusual things if’ the destination is within the origi-
nal range; see “Special Tricks™, page 55,

SAVING A RANGE OF MEMORY ON TAPE

The Monitor has two special commands which allow you 1o save a range of memory onlo casselle
tape and recall it again for later use, The first of these two commands, WRITE, lets you save the
contents of one to 65,536 memory locations on standard cassetle tape.

To save a range of memory to tape, give the Monitor the starting and ending addresses of the
range, followed by the letter W (for WRITE):

Istart} . end] W

To get an accurate recording, you should put the tape recorder in record mode before you press
RETURN] on the inpul line. Let the tape run o few seconds, then press [RETURN]. The Monitor
will write a ten-second awher'” tone onto the 1ape, followed by the data. When the Monitor is
finished, it will sound beep!” and give you another prompt. You should then rewind the ape,
and label the tape with something intelligible about the memory range that’s on the tape and what
it's supposed 1o be

0. FF FF AD 3@ C0 88 DB 84 Co @1 FO 88 C
ADB F6 A6 OB 4C B2 00 68

014

* FF FF AD 30 CH 88 D# #4
" C6 Bl FH B8 CA DH Fo A
BHIH— WH 40 B2 WA 6W

0. 1aw

.

It takes about 35 seconds tolal to save the values of 4,096 memory locations preceded by the
ten-second leader onto tape. This works out 1o a speed of about 1,350 bits per second, average,
The WRITE command writes one exira value on the tape after it has written the values in the
memory range. This extra value is the checksum. 11 is the partial sum of all values in the range.
The READ subroutine uses this value to determine if o READ has been successful (see below).

READING A RANGE FROM TAPE

Once you've saved a memory range onto tape with the Monitor's WRITE command, you can
read that memory range back into the Apple by using the Monitor’s READ command. The data
values which you've stored on the tape need not be read back into the same memory range from
whence they came; you can tell the Monitor to put those values into any similarly sized memory
range in the Apple’s memory,

The format of the READ command is the same as that of the WRITE command, except that the
command lfetter is R, not W:

|start] . [end] R

Once again, after typing the command, don’t press RETURN]. Instead, start the tape recorder in
PLAY mode and wait for the tape's nonmagnetic leader 1o pass by, Although the WRITE com-
mand puts a ten-second leader tone on the beginning of the tape, the READ command needs
only three seconds of this leader in order to lock on 10 the frequency, So you should let a few
seconds of tape go by before you press [RETURN], to allow the tape recorder’s output to sentle
down (o a steady lone.

0.8 @ 00 0@ 000 R0 BBRRRR R
(N]

«#.14

4

F FF AD 30 C# 88 DH #4
Bl F# BB CA DH Fb A6
HATA— @ 4C #2 08 od

Afier the Monitor has read in and stored all the values on the tape. it reads in the extra check-
sum value. It compares the checksum on the tape to its own checksum, and if the two differ, the
Monitor beeps the speaker and displays “ERR™. This warns you thal there was a problem during
the READ and that the values stored in memory aren’t the values which were recorded on the
tape. If, however, the two checksums match, the Monitor will give you another prompi.

CREATING AND RUNNING MACHINE
LANGUAGE PROGRAMS

Mauchine language is certainly the most efficient language on the Apple, albeit the least pleasant in
which 1o code. The Moenitor has special facilities for those of you who are determined 10 use
machine language 1o simplify creating, writing, and debugging machine language programs

You can write a machine language program, take the hexadecimal values for the opcodes and
operands, and store them in memory using the commands covered above. You can get a hexade-
cimal dump of your progeam, move it around in memory, or save il 1o tape and recall it again
simply by using the commands you've already learned. The most important command, however,
when dealing with machine language programs is the GO command. When you open a location
from the Monitor and type the letier G, the Monitor will cause the 6582 microprocessor 1o start
executing the machine language program which begins at the last opened location. The Monitor
treats this program as a subroutine: when it's finished, all it need do is execute an RTS (return
from subroutine) instruction and control will be transferred back 1o the Monitor.

Your machine | 2 can call many ines in the Monitor 10 do various things.
€ is un example of Imﬁlng and running & machine language program to display the letiers A
through Z2:

«3IBB:A9 C1 20 ED FD 18 69 1 C9Y DB D@ F6 64
308 38C

Hidf— A9 CiI 28 ED FD 18 69 W1
Hid8— C9 DB DH Fa 6#

= 3I0RG
ABCDEFGHTJIKIMNOPORSTUVWXYZ

.

(The instruction set of the Apple’s 6582 mi Is listed in Appendix A of this manual.}

48

Now, straight hexadecimal code isn’1 the casiest thing in the world to read or debug. With this in
mind, the creators of the Apple’s Monitor neatly included a command to list mechine language
programs in assembly Gomgmge form. This means that instead of having one, two, or three bytes
of unformatted hexadecimal gibberish per instruction you now have a three-letter mnemonic and
some [N, | gibherish o for cach instruction. The LIST command
1o the Monitor will start at the specified location and display a screenfull {20 lines) of instruc-
Lions:

«308L
LELL o A9 1 LDA #5301
LEL P I8 ED FD JSR SFDED
#395— 14 CLC
WIM6— 69 A1 ADC #8581
#IgE— C9 DB (MP #SDR
LREE D# Fh BNE SHIRZ
wiMi— (1] RTS
1] BRRK
1] BRRK
L] BRE
Wild— L1 BRE
#iln= L1 BRK
#ilz- e BRE
LR L1 BRE
#ila— e BRK
#3i15— L1 BRE
#ile— W BRK
#317- e BRK
LETE o LL] BRK
LEIR o LL) BRK

Recognize those first few lines” They're the assembly lunguage form of the program you typed
in a page or so ago. The rest of the lines (the BRK instructions) are just there to fill up the
sereen. The address that you specifly is remembered by the Monitor, but not in one of the ways
explained before. It's put in the Program Counter, which is used solely 1o point to locations
within programs. Afier a LIST commund, the Program Counter is set to point 1o the location
immediately following the last location displaved on the screen, so that if you do another LIST
command it will continue with another screenfull of instructions, starting where the first screen
left off,

THE MINI-ASSEMBLER

There i another program within the Monitor® which allows you 1o type programs into the Apple

in the same assembly format which the LIST command displays. This program is called the

Apple Mini-Assembler, It is a “*mini"-assembler because it cannotl undersiand symbaolic labels,
hing that a full-bl must do. To run the Mini- Assembler, type:

® The Mini-Assembler does nol sctually reside in the Monitor ROM. bul is pan of the Inscger BASIC ROM
ser. Thus, it o not avaslsble on Apple 1] Plus systems or while Firmware Applesolt 11 is in use

49

sFo660G

You are now in the Mini-Assembler. The exclamation point (1) is the prompt character. During
your stay in the Mini-Assembler, you can execule any Monitor command by preceding it with a
dollar sign (8} Aside from that, the Mini-Assembler has an instruction set and syntax all its
own,

The Mini-Assembler remembers one address, that of the Program Counter. Before you starl 1o
enler a program, you must set the Program Counter 1o point 1o the location where you want your
program to go. Do this by typing the address followed by a colon. Follow this with the
mnemonic for the first instruction in your program, followed by a space. Now type the operand
of the instruction (Formats for operands are listed on page 66). Now press [RETURN|. The
Mini- Assembler converts the line you typed into hexadecimal, stores it in memory beginning at
the location of the Program Counter, and then disassembles it again and displays the disassem-
bled line on top of your nput line. It then poses another prompt on the next line. Now it's
ready to accept the second instruction in your program, To tell it that you want the next instruc-
tion to follow the first. don't Lype an address or a colon, but only a space, followed by the next
instruction’s mnemonic and operand. Press [RETURN]. It assembles that line and waits for
another.

If the line you type has an error in i1, the Mini-Assembler wi beep loudly and display a
circumflex (*) under or near the offending character in the input line. Meost common errors are
the result of ical mistakes: missp ics, missing by eic. The
Mini- Assembler also will reject the input line if you forget the space before or afler a mnemonic
or include an extraneous character in o hexadecimal value or address. IT the destination address
of a branch instruction is out of the range of the branch (more than 127 locations distant from
the address of the instruction), the Mini- Assembler will also flag this as an error,

1308 LDX #@2

#ige— A2 W2 LDX #8542
! LDA S

LELF B5 w4 LDA SHR.X
! 5TA 510.X

Wigd— 95 18 STA S18.X
! DEX

#id6— CA DEX
! STA SC@3@

HipT— B 38 C# STa

! BPL 5382

LRSS 1# Fa BPL
! BRK

LELTEg L1 BRK
l

To exit the Mini-Assembler and re-enter the Monitor, cither press [RESET] or type the Manitor

50

command (preceded by a dollar sign} FF69G:
1SFF69G
.

Your assembly language program is stored in memory. You can look at it again with the LIST
command:

3880

LELL o
LEL kg
CETEE
LELL S
CETRAS
BIWA—
WINC—
LY o
WINE—
W3NF-
#319-
#311—
#312-
#313—
#il4-
#315—
#3l6—
#317-
#ilE—
#ile—

EEEEEEEEEEEE

B

DEBUGGING PROGRAMS

As putl so concisely by Lubarsky®, “There's always one more bug.”" Don’t worry, the Monitor
provides facilities for stepping through ornery programs to find that one last bug. The Monitor’s
STEP** command decodes, displays, and executes one instruction at a time, and the TRACE*®
command steps quickly through a program, stopping when a BRK instruction is executed,

Each STEP command causes me Mommr 10 execute the instruction in memory pointed to by the
Program Counter. The i is layed in its di hled I'nrm then executed. The
contents of the 6582°s internal registers are di d after the i is After exe-
cution, the Program Counter is bumped up to point to the next instruction in the program.

Here's what happens when you STEP through the program you entered using the Mini-
Assembler, above:

*In Muepiy's Law, and Ovher Reasons why Fhongs Go Wrong, edised by Arthur Bloch, Price/Ssern/Sloane 1977
** The STEP and TRACE commands are not available on Apples with the Autostart ROM

51

#igi— A2 82 LDX #502
A=#A X=#1 Y=D§ P=3if S=F§

3 B5 ## LDA SH¥. X
A=AC X=#1 Y=Di P=3}§ S=F§

L STA S19,X
Y=D8 P=3# S=Fi

Y=D8 P=3# S=FH#

LR B 38 C# STA SCead
A=HC X=#1 Y=DE P=3# S=F3§

*5

HidA— 18 Fé BPL SH32
A=#C X=#1 Y=DE P=3ip S=F§

*5

Higz— B5S W@ LDA LTI
A=#B X=#1 Y=D& P=38 S=F§

5

LRL R 95 I8 STA 518X

A=#B X=#1 Y=D8 P=3# S=F%

Notice that after the third instruction was executed, we examined the contents of location 12,
They were as we expecied, and so we continued stepping. The Monitor keeps the Program
Counter and the last opened address separate from one another, so thal you can examine or
change the contents of memory while you are stepping through your program.

The TRACE command is just an infinite STEPper. It will stop TRACEing the execution of a pro-
gram only when you push [RESET] or it encounters a BRK instruction in the program. [If the
TRACE encounters the end of a program which returns 1o the Monitor via an RTS instruction,

the TRACEing will run ofl into never-never land and must be stopped with the RESET] button.
oT
Wide— CA DEX
A=#B X=## Y=D8 P=32 _S‘=F8

LRY N B 3@ C# STA SCHi
A=#B X=## Y=D3 P=31 S=F8
LR ES ¥ Fé BPL SHie2

52

Y=D& P=311 S=F8§
(RELY Sd.X
\=|]ﬂ P=3i# S=F8&
STA 518X
\=l]!l P=38 S=F3

- Y=D8 P=R# S=FI
EL N} STA SCHAM
F

Fé BPL. S#342
N=FF Y=D§ P=B# S=F§

L)

A=#A X=FF Y=DK P=B# S=F8%

EXAMINING AND CHANGING REGISTERS

As you saw above, the STEP and TRACE commands displayed the contents of the 6582°s inter-
nal registers after cach instruction. You can examine these registers a1 will or pre-set them when
vou TRACE, STEP, or GO a machine language program,

The Monitor reserves five locations in memory for the five 6582 registers: A, X, Y, P {processor
stulus register), and 5 (stack pointer). The Monitor’s EXAMINE command, invoked by a
CTRL E]. tells the Monitor 1o display the contents of these locations on the screen, and lets the
location which holds the 6502's A-register be the next chungeable location. If you want 1o
change the values in these locations, just type a colon and the values separated by spaces. Next
time you give the Monitor a GO, STEP, or TRACE command, the Monitor will load these five
locations into their proper registers inside the 6582 before it executes the first instruction in your
program,

A=#A X=FF Y=D8 P=B# S=F§
« BR @82

+[CTR

A=B# X=#2 Y=DB P=B# S5S=F4§
«3IB6S

Hide— CA DEX

A=B# X=#1 Y=D3 P=38# S=F4%

.5

WiRT— HD 3@ C# 5TA SCHIR
A=BE X=H#1 Y=DE P=1# S=FH

5

IRA— I# Fo BPL S#342
A=B# X=#1 Y=DK P=3# S=F3§

53

MISCELLANEOUS MONITOR COMMANDS

You can control the setiing of the Inverse/Normal location used by the COUT subroutine {see
page 321 from the Monitor so that all of the Menitor's output will be in Inv video. The
INVERSE command does this nicely. Input lines are siill displayed in Normal mode, however.
To return the Monitor's output 1o Normal mode, use the NORMAL command.

#A BB BC @D WE #F DA #4
C6 #1 F@ #8 CA DR Fé A

0. F

WHEE— #A UB BC WD RE BF DR W4
WHIE— C6 #1 F# #8 CA DR Fé A6
N

0F

W= #A #B AC #D HE BF D@ #4
#E= C6 #1 F# #8 CA DF F6 Ab

The BASIC command, invoked by a [CTRL B], lets you leave the Monitor and enter the language
installed in ROM on your Apple. usually either Apple Integer or Applesoft 11 BASIC. Any pro-
gram or variables that you had previously in BASIC will be lost. Il you've left BASIC for the
Monitor and you want to re-cnter BASIC with your program and variables intact, use the
(CONTINUE BASIC) command. 1T you have the Apple Disk Operating System (DOS)
active, the *3D@G" command will return you 1o the lainguage you were using, with your program
and variables intact.

The PRINTER command, activated by a [CTRL P], diverts all output normally destined for the
screen 1o an Apple Intelligent Interface® in a given slol in the Apple's backplane. The siot
number should be from | 10 7, and there should be an interface card in the given slot, or you will
lose control of your Apple and your program and variables may be lost. The format for the com-
mand is:

|slot number| [CTRL P

A PRINTER command to slot number @ will reset the flow of printed outpul back to the Apple’s
video screen.

The KEYBOARD command similarly substitutes the device in a given backplane slot for the
Apple's keyboard. For details on how these commands and their BASIC counterparts PR# and

IN# work, please refer to “"CSW and KSW Switches™, page 83, The format for the KEYBOARD
command is:

{slot number| [CTRL K

54

A slot number of @ for the KEYBOARD command will force the Monitor to listen for input from
the Apple’s buili-in keyboard,

The Monitor will also perform simple h | addition and

the format:

. Just type a line in

Ivalug] + [valuc)
{valug] — [value}

The Apple will perform the arithmetic and display the result:

«20+13

SPECIAL TRICKS WITH THE MONITOR

You can put as many Monilor commands on a single line as you like, as long as you separale
them with spaces and the total number of characters in the line is less than 254, You can inter-
mix any and all commands freely. except the STORE (:) command. Since the Monitor takes all
values following a colon and places them in consecutive memory locations, the last value in
STORE musi be followed by a letter command before another address is encountered. The
NORMAL command makes a good separator, it usually has no effect and can be used anywhere.

«300.307 380:18 69 1 N 38@.382 3085 5

BIER— W0 AR BR AR AP RE AR R
W3IgE— 1B 69 #1

LELL 18 CLC
A=#4 X=H#1 Y=DE P=38 S=F§
LEL] b 69 @1 ADC #5#1

A=#5 X=#1 Y=DE P=318 S=F8

.
Single-letter commands such as L, §, [, and N need not be separated by spaces.

If the Monitor encounters a charscter in the input line which it does not recognize as either a
hexadecimal digit or a valid command character, it will execute all commands on the input line up
to that character, and then grind to a halt with & noisy beep, ignoring the remainder of the input

line.

The MOVE command can be used to replicate a pattern of values throughout a range in memory,

To do this, first store the pattern in its first position in the range:
*3ie:1l 22 33

Remember the number of values in the pattern: in this case, 3. Then use this special arrange-
ment of the MOVE command:

|start+number} < |start} . [end—number] M
This MOVE command will first replicate the pattern at the locations immediately following the
original pattern, then re-replicate that pattern following iiself, and so on unil it fills the entire
range.

«I@3<308. 320

380 32F

wid 33 11 22 33 11 12
LE] X 33 11 22 33 11
wil 11 22 33 11 23 33

#318— 11 22 33 11 22 33 11 22
#3198 33 11 22 33 11 22 33 11
#328— 22 33 11 22 33 11 22 33

.
A similar trick can be done with the VERIFY command 10 check whether o pattern repeats itsell
through memory. This is especially useful 10 verily thal a given range of memory locations all
contain the same value:

LA]

#IR1<IBB. 3P

«3IR1<300.31FV

«304:@2

«IR1<3BB.3IFV

HIR3—dd (#2)

HiR4—H2 (#H)

You can create a command line which will repear all or part of itself indefinitely by beginning the
part of the command line which is 1o be repeated with a letter command, such as N, and ending it
with the sequence 34:n, where n is a hexadecimal number specifying the characier position of the
command which begins the loop; for the first character in the line, a=8. The value for » must
be followed with a space in order for the loop 10 work properly.

«N 308 382 340

LELL]

The only way 10 stop a loop like this is to press [RESET

CREATING YOUR OWN COMMAND!

The USER ([T

RLY]) command, when encountered in the inpul line, forces the Monitor to
jump to location number $3F8 in memory. You can put your own JMP instruction in this loca-
tion which will jump to your own program. Your program can then either examine the Monitor's
registers and pointers or the input line itself. For example, here is a program which will make
everything on the input line following

the [CTRL Y| command act as o “comment”™ indicator:
the [CTRL ¥| will be displayed and ignored.

sFo660

1idd:LDY $34

L] Ad 34
! LDA 280.Y
higz-— BY #¢
! JSR FDED
LEL R 28 ED
tOINY

#igE— R

! OMP #$8D

Higo— 9 8D
! BNE 302

LRI ¥ F5
! IMP SFFa9

LEL] o 4C 69
PIFE: JMP 5309

#3F8— 4C We

L3

FD

LDY

LDA

JSR

JMP

JMP

534

SFDED

#5560

S#3N2

SFFo9

LLELL

1SFF69G

«[CTRLY] THIS 1S A TEST.
THIS 1S A TEST.

58

SUMMARY OF MONITOR COMMANDS

ry of Monitor Commands.

Examining Memory,
fadrs]

fadrs1] {adrs2]

RET!

Changing the Contents of Memory.

Yadrs):val} [vall ...

val} val] ...

Maoving and Comparing.

(dest] < [start].[end]M

|dest] < [stant).lend]V

Saving and Loading via Tape.

Istart]. jend] W

Istant].lend|R

Running and Listing Programs,

ladrs|G

ladrs]L

Examines the value contained in one location,

Displays the values contained in all loc
between {adrsl] and [adrs2).

Displays the values in up 1o eight locations fol-
lowing the last opened location,

Stores the values in consecutive memory loca-
tions starting at adrs).

Stores values in memory starting at the next
changeable location.

Copies the values in the range [start].[end] into
the range beginning at [dest|.

Compares the values in the runge Istart] lend]
1o those in the range beginning at [dest|.

Writes the wvalues in the memory range
|start].lend] onto tape, preceded by a ten-
second leader

Reads values from tape, storing them in
memory beginning at |stan} and stopping a1
fendl. Prims “ERR' if an error occurs.

Transfers control to the machine language pro-
gram beginning a1 [adrs].

Disassembles and displays 20 instructions, start-
ing at |adrs|. Subsequent L's will display 20
more instructions each,

Summary of Monitor Commands.

The Mini-Assembler
F656G

Slcommand)

SFF6%G

ladrs) §

|adrs) T

Miscellaneous.

CTRL C

|val] + [val]

Ival} = [val]

[slot}

[slot| [CTRL K

[CTRLY]

® Mol available in the Apple 11 Plus,
** Not available in the Autostart ROM

Invoke the Mini- Assembler.*

Execute a Monitor command from the Mini-
Assembler.

Leave the Mini- Assembler,

Disassemble. display, and execute the instruc-
tion at ladrs), and display the contemis of the
6582°s imernal registers. Subsequent S's will
display and execule successive instructions,**
Step infinitely. The TRACE command stops
only when il executes a BRK instruction or
when you press [RESET].**

Diisplay the contents of the 6582°s registers.

Set Inverse display mode.
Set Normal display mode.

Enter the language currently installed in the
Apple’s ROM.

Reenter the language currently installed in the
Apple’s ROM.

Add the two values and print the result.

Subtract the second value from the first and
print the result.

Divert output 1o the device whose interface
card is in slot number [slot]. If [slot] =@, then
route outpul to the Apple's screen.

Accept input from the device whose interface
card is in slot number [slot). I [slot] =@, then
accept input from the Apple’s keyboard.

Jump to the machine language subroutine at
Iocation S3F8.

SOME USEFUL MONITOR SUBROUTINES

Here is i list of some useful subroutines in the Apple’s Monitor and Autostart ROMs. To use
these from machine language progr Ioad the proper memory locations or 6582

registers as required by the subroutine and execute a JSR to the subrouting’s starting address. It
will perform the function and return with the 6582's registers set as described.

SFDED couT Output a character

COUT is the standard character oulput subrouting, The character to be output should be in the
accumulator, COUT calls the current character output subroutine whose address is stored in
CSW (locutions $36 and $37), usually COUTI {see below).

SFDFW couTt Output to screen

COUT] displays the character in the accumulator on the Apple’s screen at the current output cur-
sor position and advances the output cursor, It places the character using the setting of the
Normal/lnverse location. It handles the control characters RETURN, linefeed, and bell. It
returns with all registers intact.

SFER# SETINY Set Inverse mode

Sets Inverse video mode for COUTL. All output characters will be displayed as black dots on a
white background. The Y register is set to $3F, all others are unchanged.

SFES4 SETNORM Set Normal mode

Sets Normal video mode for COUT1. All output characters wwill be displayed as white dots on a
black background. The Y register is set to $FF, all others are unchanged.

SFDSE CROUT Generate a RETURN
CROUT sends a RETURN character 1o the current output device.
SFDEB CROUTI RETURN with clear

CROUTI clears the screen from the current cursor position to the edge of the text window, then
calls CROUT.

SFDDA PRBYTE Print a hexadecimal byte

This subroutine outputs the contents of the accumulator in hexadecimal on the current output
device. The contents of the accumulator are scrambled.

SFDE3 PRHEX Print a hexadecimal digit

This subroutine outputs the lower nybble of the accumulator as 4 single hexadecimal digit. The
contents of the accumulator are scrambled.

SF941 PRNTAX Print A and X in hexadecimal

This outputs the contents of the A and X reisters as a four-digit hexadecimal value. The accu-
mulator contains the first byte output, the X register contains the second, The contents of the

(3]

are usually
SF948 PRBLNK Print 3 spaces

Outputs three blank spaces to the standard output device. Upon exit, the accumulator usually
contains SA®, the X register contains @,

SFo4A PRBL2 Print many blank spaces

This subroutine outputs from 1 to 256 blanks 1o the standard output device, Upon entry, the X
register should contain the number of blanks to be output. If X =358, then PRBL2 will output
256 blanks.

SFF3A BELL Output a “*bell” character

This subroutine sends a bell (CTRL G) character to the curreml output device, It leaves the
accumulator holding $87,

SFEDD BELLI Beep the Apple's speaker

This subrouting beeps the Apple’s speaker for .1 second at 1KHz. It scrambles the A and X
regisiers.

SFDHC RDKEY Get an input character

This is the standard character input subroutine. It places a flashing input cursor on the screen at
the position of the output cursor and jumps 1o the current input subroutine whose address is
stored in KSW (locations 338 and $39), usually KEYIN (see below).

$FD35 RDCHAR Get an input character or ESC code

RDCHAR is an alternate input subroutine which gets characters from the standard inpul, but also
interprets the eleven escape codes (see page 34),

SFDIB KEYIN Read the Apple’s keyboard

This is the keyboard inpul subroutine. Tt reads the Apple's keyboard, waits for a keypress, and
randomizes the random number sced (see page 32). When it gets a keypress, it removes the
Nashing cursor and returns with the keycode in the accumulator.

SFD6A GETLN Get an input line with prompt

GETLN s the subroutine which gathers input lines (see page 33). Your programs can call
GETLN with the proper prompt character in location $33; GETLN will return with the input line
in the input buffer (beginning at location $280) and the X register holding the length of the input
line.

SFD67 GETLNZ Gel an input line

GETLNZ is an alternate entry point for GETLN which issues a carriage return to the standard
output before falling into GETLN (see above).

62

SFD6F GETLNI Get an input line, no prompt

GETLNI is an alternate entry point for GETLN which does not issue a prompt before it gathers
the input '!'[g_e. If, however, the user cancels the input line, cither with too many backspaces or
with a [CTRL X]|, then GETLNI will issue the contents of location $33 a5 a prompt when it gets
another line,

SFCAS WAIT Delay

This subroutine delays for a specific amount of time, then returns to the program which called i1,
The amount of delay is specified by the contents of the accumulator, With A the contents of the
accumulator. the delay is %:(26+27A+ 5A%) pseconds. WAIT returns with the A register zeroed
and the X and Y registers undisturbed,

§FRa4 SETCOL Set Low-Res Graphics color

This subroutine sets the color used for plotting on the Low-Res screen (o the color passed in the
accumulator. See page 17 for a table of Low-Res colors,

SFHSF NEXTCOL Increment color by 3

This adds 3 1o the current color used for Low-Res Graphics.

SFERR PLOT Plot a block on the Low-Res screen

This submu_\inc plots u single block on the Low-Res screen of the prespecified color. The block’s

vertical position is passed in the accumulator, its horizontal position in the Y register. PLOT
returns with the acc bied. but X and ¥ d

SFE19 HLINE Diraw a horizental line of blocks

This subroutine draws a horizontal line of blocks of the predetermined color on the Low-Res
screen. You should call HLINE with the vertical coordinate of the line in the accumulator, the
leftmost horizontal coordinate in the Y register, and the rightmast horizontal coordinate in loca-
tion $2C. HLINE returns with A and Y scrambled, X intact.

SFH1E YLINE Diraw a vertical line of blocks

This subroutine draws a vertical line of blocks of the predetermined color on the Low-Res screen.
You should call VLINE with the horizontal coordinate of the line in the Y register, the top venti-
¢l coordinate in the accumulator, and the bottom vertical coordinate in location $2D. VLINE
will return with the sccumulator scrambled.

$F832 CLRSCR Clear the entire Low-Res screen

CLRSCR clears the entire Low-resolution Graphics screen. If you call CLRSCR while the viden
display is in Text mode, it will fill the screen with inverse-mode @ characters. CLRSCR des-
troys the contents of A and Y.

SFR36 CLRTOP Clear the top of the Low-Res screen

CLRTOP is the same as CLRSCR (above), except that it clears only the top 40 rows of the
screen,

SFaT1 SCRN Read the Low-Res screen

This subroutine returns the color of a single block on the Low-Res screen. Call it as you would
call PLOT {above). The color of the block will be returned in the accumulator, No other regis-
ters are changed.

SFBIE PREAD Read a Game Controller

PREAD will return a number which represents the position of a game controller. You should
pass the number of the game controller (@ to 3) in the X register. IF this number is not valid,
strange things may happen. PREAD returns with a number from $0@ 1w SFF in the Y register.
The accumulator is scrambled.

SFFID PRERR Print “ERR™

Sends the word “ERR™, followed by a bell character, to the standard output device. The accu-
mulator is scrambled.

SFF4A IO0SAVE Save all registers

The contents of the 6502's internal registers are saved in locations $45 through 549 in the order
A-X-Y-P-5. The contents of A and X are changed; the decimal mode is cleared.

SFFIF TOREST Restore all registers

The contents of the 6582's internal registers are loaded from locations $45 through $49.

MONITOR SPECIAL LOCATIONS

Table 14: Page Three Monitor Locations

Decimal Hex Monitor ROM Autostart ROM
([S3F Holds the address
19 S3F1 of ihe subroutine

Nore whicll_ handics
. machine language
“BRE™ requests

3 {normally $FAS9).
::} | :iii None. Soft Entry Vector.
1812 S3F4 None, Power-up Byte.
1813 SIF5 | Holds o “JuMP™ instruction 1o the
1814 $3F6 | subroutine which handles Applesoft Il
195 SIFT | “&" communds.® Normally $4C $58

SFF.

016 SIFE | Holds @ “JuMP" insiruction 1o the
w7 53F9 | subroutine which handles “USER™
1018 S3FA | {[CTRL l'hs
(LIRS SIFB | Holds & **JuM ction 10 the
8z SIFC | subroutine wi handles Non-
821 SIFD | Mi le | .

1822 SIFE | Holds the address of the subroutine
1823 $IFF | which handles Int ReQuests,

* See page |23 o the Applesalt 11 BASIC Reference Manual

65

MINI-ASSEMBLER INSTRUCTION FORMATS

The Apple Mini-A izes 56 ics and 13 ing formats used in 6582
Assembly | The cs are dard, as used in the MOS
Technology /5 k6500 F Manual {Apple part number A2LO0O3), but the

addressing formats are different. Here are the Apple standard address mode formats for 6582
Assembly Langusge:

_Table 15: Mini-Assembler Address Forma

| Mode: Farma
| Accumulator None.
i #Slvalue
Absolute 5
Zero Page Sladdress
Indexed Zero Page I X
I Y
Indexed Absolute I X
Sladd ¥
Implied Nong,
Relative S{address]

Indexed Indirect (S[address|, X}
Indirect Indexed (S [address|),Y
Absolute Indirect (S[address|)

An |address) consists of one or more hexadecimal digits. The Mini-Assembler interprets
addresses in the same manner that the M r docs: if an address has fewer than four digits, it
adds leading zeroes; if it has more than four digits, then it uses only the last four.

All dollar signs (5}, signifying that the addresses are in hexadecimal notation, are ignored by the
Mini-Assembler and may be omitled.

There is no syntactical distinction between the Absolute and Zero Page addressing modes. I you
give an instruction 10 the Mini-Assembler which can be used in both Absolute and Zero-Page
mode, then the Mini- Assembler will assemble that instrection in Absolute mode il the operand
for that instruction is greater than SFF, and it will assemble that instruction in Zero Page mode if
the operand for that instruction is less than S8189.

with the Acc fator and Implied addressing modes need no operand

Branch instiructions, which use the Relative addressing mode, require the target address of the
branch. The Mi hler will ically figure out the relative distance 1o use in the
instruction. I the targel address is more than 127 locations distant from the instruction, then the
Mini- Assembler wil sound 4 “beep™, place circumfex (7) under the target address, and ignore
the line.

If you give the Mini- the ic for an i and an operand, and the
addressing mode of the operand cannot be used with the instruction you entered, then the Mini-
Assembler will not accept the line,

CHAPTER 4
MEMORY ORGANIZATION

The Apple’s 6582 mi can directly a 1otal of 65, 5]6 distinct memory loca-
tions. You can think of the Apple’s memory us a book \th 256 “pages’, with 256 memory loca-
tions on each page. For example, **page $38" is the 256 memaory locations beginning at location
S300 and ending at location $38FF. Since the 6502 uses two eight-bit bytes to form the address
of any memory location, you can think of one of the bytes as the page number and the other as
the location within the page.

The Apple’s 256 pages of memory fall into three categories: Random Access Memory (RAM),
Read-Only Memory (ROM), and Input/Output locations (1/0). Different arcas of memory are
dedicated 1o different functions. The Apple's basic memaory map looks like this:

RAM (48K)
198 SBE
191 SBF
192 SC8
193 s
10 (2K)
198 sCh
199 sCT
200 scs
201 SC9
. 1/0 ROM (2K)
206 SCE
W SCF
8 SDA
209 sDI
: ; ROM (12K)
254 SFE
255 SFF

Figure 5. System Memory Map

RAM STORAGE

The area in the Apple's memary map which is allocated for RAM memory begins at the botlom

of Page Zero and extends up 1o the end of Page 191. The Apple has the capacity to house from
4K (4,096 bytes) to 48K (49,152 bytes) of RAM on its main circuit board. In addition, you can
expand the RAM memory of your Apple all the way up to 64K (65,536 bytes) by installing an
Apple Language Card (part number A2BO006). This extra 16K of RAM takes the place of the
Apple’s ROM memory, with two 4K segments of RAM sharing the 4K range from SD##@ 10
SDFFF.

Most of your Apple’s RAM memory is available 1o you for the storage of programs and data.
The Apple, however, does reserve some locations in RAM for use of the System Monitor, vari-
ous languages, and other system functions. Here is a map of the available aress in RAM
memory:

Table 16: RAM Organization and Usage
Page Number:
Decimal — Hex Lioed Tor
L] 08 | System Programs
1 $81 | System Stack
2 382 | GETLN Input Buffer
3 $83 | Monitor Vector Locations
4 S84
5 585 | Text and Lo-Res Graphics
L] 586 | Primary Page Storage
7 sa7
B Se8
9 M9 | Text and Lo-Res Graphics
1@ SPA | Secondary Page Storage
1 o
FREE
12 S8
through
k| SIF
— - RAM
12 520 | Hi-Res Graphics
through Primary Page
|63 S3F | Storuge i
[548 | Hi-Res Graphics
through Secondary Page
95 S5F | Storage
96 Soi
through
191 SBF

Following is a breakdown of which ranges are assigned 1o which functions:

Zero Page. Due 10 the construction of the Apple’s 6582 microprocessor, the lowermaost page in
the Apple’s memory is prime real estate for machine language programs. The System Monitor
uses about 20 locations on Page Zero, Apple Integer BASIC uses a few more; and Applesofi 11
BASIC and the Apple Disk Operating System use the rest. Tables 18, 19, 20, and 21 show the
locations on zero page which are used by these system funclions.

Page One, The Apple’s 6582 microprocessor reserves all 256 bytes of Page 1 for use us a

“stack™. Even though the Apple usually uses less than half of this page at any one time, it is not
casy to determine just what is being used and what is lying fallow, so you shouldn’t try 1o use

]

Page | 1o store any data.

Page Two. The GETLN subroutine, which s used 1o get input lines by most programs and
languages, uses Page 2 as its input buffer. I you're sure that you won't be typing any long input
lines, then you can (tat) safely store v data in the upper regions of Page 2.

Page Three. The Apple’s Monitor ROM (both the Autostart and the original) use the upper six-
teen locations in Page Three, from location 33F@ 1w $3IFF (decimal 1808 10 1823). The
Monitor's use of these locations is outlined on page 62

Pages Four through Seven. This 1,024-byte range of memary locations is used for the Text and
Low-Resolution Graphics Primary Page display, and is for storage

There are 64 locations in this range which are not displayed on the screen. These 64 locations are
reserved for use by the peripheral cards (see page 82).

RAM CONFIGURATION BLOCKS

The Apple’s RAM memory is composed of eight to 24 integrated circuits. These IC's reside in
three rows of sockets on the Apple board, Each row can hold eight chips of either the 4,096-bit
(4K) or 16,384-bit (16K) variety. The 4K RAM chips are of the Mostek “"4096™ family, and
may be marked “MEK4096" or “MCM6604™". The 16K chips are of the “4116™ type, and may
have the denomination “MK4116™ or “UPD4160°". Each row must have cight of the same type
of chip, although different rows may hold different types.

A row of eight 16K IC's represents 16,384 eight-bit bytes of RAM. The lefimost IC in a row

P the (least ificant) hn of every byte in that range, and the rightmost 1C
in 4 row the (most ifi } bit of every byte. The row of RAM 1C's
which is frontmost on the Awle board holds the RAM memory which begins at location @ in the
memory map; the next row back continues where the first left off.

You can tell the Apple how much memory it has, and of what type it is. by plugging Memony
Configiration Blocks into three IC sockets on the left side of the Apple board. These
configuration blocks are three 14-legged critters which look like big, boxy integrated circuits. But
there are no chips inside of them: only three jumper wires in each. The jumper wires “‘sirap™
each row of RAM chips into a specific place in the Apple’s memory map. All three configuration
blocks should be strapped the same way, Apple supplics several types of standard configuration
blocks for the most common system sizes, A sct of these was installed in your Apple when it was
built, and you get a new set each time you purchase additional memaory for your Apple. If, how-
ever, you want (o expand your Apple’s memory with some IU\M chips that you did not purchase
from Apple, you may have o your own i blocks (or modify the ones
already in your Apple).

There are nine different RAM memory configurations possible in your Apple. These nine
memory sizes are made up from various combinations of 4K and 16K RAM chips in the three
rows of sockets in your Apple. The nine memory configurations are:

SHD

SAMM | 16K
S50 =
4K

57004

16K | 16K | 16K 1K

Shia
4K | 4K
SMde -

S3te I
4K

SI000 | 16K | 16K | 16K | 16K | 16K | 16K "
4K | 4K |
1000

4K -iKi-iK
—

System

Size 48K 36K 32K MK 20K 16K 12K BK 4K

Figure 6. Memary Configurations

OF the fourteen “legs™ on each controller block. the three in the upper-right corner {looking at it
from above) represent the three rows of RAM chips on the Apple’s main board. There should
be a wire jumper from each one of these pins 1o another pin in the configuration block. The
“other pin’' corresponds 1o a place in the Apple’s memory map where you want the RAM chips
in each row to reside. The pins on the confi ion block are thus:

4K range S8000-SBFFF | /

4K range S100A-SIFFF | 2 13 | Middie row (D"
4K range S2008-S2FFF | 7 2 | Backmost row (“E”)
4K range SIMO-SIFFF | 4 11| No connection.
5
fi
.

Frontmaost row (C™')

4K range S4000-S4FFF it | 16K range SO880-SIFFF
4K range S5000-S5FFF W 16K range S4880-STFFF
¥ | 16K range S5000-SBIFFF

4K range S8ORR-SEFFF

Figure 7. Memory Configuration
Block Pinouts

IF & row contains eight chips of the 16K variety, then you should connect a jumper wire from the
pin corresponding 1o that row 1o a pin corresponding 1o a 16K range of memory, Similarly, if a
row contains eight 4K chips, you should connect a jumper wire from the pin for that row to a pin
corresponding to a 4K range of memory. You should never put 4K chips in a row strapped for
16K, or vice versa, It is also not advisable 10 leave o row unstrapped, or 1o strap lwo rows into
the same range of memory.

You should always make sure that there is some kind of memory beginning at location #. Your
Apple’s memory should be in one contiguous block, but it does not need 1o be. For example, if
you have only three sets of 4K chips, bul you want to use the primary page of the High-

T

Resolution Graphics mode, then you would strap one row of 4K chips o the beginning of
memory (4K range SOBOB through SAFFF), and strap the other two rows to the memory range
used by the High-Resolution Graphics primary page (4K ranges 52808 through S2FFF and S300¢
through $3FFF). This will give you 4K bytes of RAM memory to work with, and 8K bytes of
RAM to be used as a picture buffer.

Notice that the configuration blocks are installed into the Apple with their front edges (the edge
with the white dot, representing pin 1) towards the front of the Apple

There is a problem in Apples with Revision @ boards and 20K or 24K of RAM. In these sysiems,
the 8K range of the memory map from S400@ 1o SSFFF is duplicated in the memory range S6808
10 $TFFF, regardless of whether it contains RAM or not. So systems with only 20K or 24K of
RAM would appear 10 have 24K or 36K, but this extra RAM would be only imaginary. This has
been changed in the Revision 1 Apple boards

ROM STORAGE

The Apple, in its natural stute, can hold from 2K (2,048 bytes) 1o 12K (12,288 bytes) of Read-
Only memory on its main board. This ROM memory can include the System Monitor, a couple
of dialects of the BASIC language, various system and utility programs, or pre-puckaged
subroutines such as are included in Apple's Programmer’s Aid # 1 ROM.

The Apple's ROM memory resides in the top 12K (48 pages) of the memory map, beginning at
location SDOM. For proper operation of the Apple, there must be some kind of ROM in the
upppermost locations of memory. When you turn on the Apple’s power supply, the microproces-
sor must have some program 1o execute. It goes 1o the top locations in the memaory map for the
uddress of this program. In the Apple, this address is stored in ROM, and is the address of a pro-
gram within the same ROM. This program initializes the Apple and lets you stan to use it (For
a description of the startup cycle, see “The RESET Cycle", page 36.)

Here is a map of the Apple’s ROM memory, and of the programs and packages that Apple
currently supports in ROM:

Table 1 M Organization and Usage
Page Number:
Decimal_Hex
;T: :3: Programmer’s Aid #1
216 SDE
228 SDC Applesoft
224 SE@]
08 SE4 BASIC
232 SE8 Integer BASIC
236 SEC
249 Sra
244 SF4 | Utility Subroutines
g;: ?FFW:‘ Monitor ROM Autostart ROM

72

Six 24-pin IC sockets on the Apple’s board hold the ROM integrated circuits. Each socket can
hold one of a type 93168 2.048-byte by B-bit Read-Only Memory. The lefimost ROM in the
Apple's board holds the upper 2K of ROM in the Apple's memory map; the rightmost ROM 1C
holds the ROM memaory beginning al page SD® in the memory map. 1T a ROM is not present in
u given socket, then the values contained in the memory range corresponding Lo that socket will
be unpredictable.

The Apple Firmware card can disable some or all of the ROMs on the Apple board, and substi-
tute its own ROMSs in their place. When you have an Apple Firmware card installed in any slot in
the Apple’s board, you can disable the Apple’s on-board ROMs by Mipping the card’s controller
switch 1o its UP position and pressing and releasing the [RESET | button, or by referencing location
SCO8R (decimal 49288 or -16256). To enable the Apple's on-board ROMs again, Nlip the con-
troller switch 1o the DOWN position and press [RESET], or reference location SC#81 (decimal
49281 or -16255). For more information, see Appendix A of the Applesaft 11 BASIC Program-
ming Reference Manual.

I/0 LOCATIONS

4,096 memory locations (16 pages) of the Apple’s memory map are dedicated 10 input and output
functions. This 4K range begins at location SCP@ (decimal 49152 or -16384) and extends on up
to location SCFFF (decimal $3247 or -12289), Since these functions are somewhat intricate, they
have been given a chapter all 1o themselves. Please see Chapter 5 for information on the alloca-
tion of Input/Output locations,

73

ZERO PAGE MEMORY MAPS

Decimal ¢ 1 2 13 14
Hex §# SI §2 S3 84 35 S6 §7 S8 $9 SA 5B SC SD SE S

e Sid

16 810

P 7. |

a8 5

= Table 19:_ Applesoft 11 BASIC Zero Pa -
MDecimal @ 1 2 3 4 5 6 71 8 9 12 13 14 15
Hex S8 S1 52 83 S4 85 $6 $7 S8 39 § SC SD SE SF
oS [e 8 & & & e « & s s s e
16 Sig |« & o & & & & o @
32 sm
48 838
64 S48
@ S58
9% So8
112 578
128 588
144 5%
168 Sa@
176 SBA
192 3Ce
88 SDé
24 SEB |
240 SFR |

(R R NN]
LRI B
ss e s s e s EBEN
CRCRC RN A
LR N)
RO IR R]
® sseesssee
@ ssesewee
RO R B O A N A]
LRI A B A N
TR N AN)
LRI O
LRI I
CRCRC R
" sssewee
" esseses

74

Decima 8 1 2 3 4 5 6

T

Hex S0 S1 §2 S3 S4 S5 S6 §7 S8 $9 SA

1

5B SC

12

13
D

14
SE

SF |

] Sod
16§18
32 5 .
4% S3@ L
64 S48 |c . = = = = =
B 558

9 S6B

112 5§78 | o

128 S&@

144 S99

160 SAd

176 SBe L]

192 SC9
08 S |
224 SEB
|_2-W 5F@

[_Table 21:_Integer BASIC Zero Page Usage

=

Decimal 2 -3 4 5 4
] S
16 S8
32 s
43 s
B4 S4B
LU
9% S6@
112 ST
128 $8@
144 5%
168
176
192
288
224
249 I

LR A A Y
see s
R
LR A A A
LR A
LR A Y
LR I

7

]

[]

CRCRC R N Y

19

CRCI A A A

1

Hex S SI S2 S3 5S4 S5 S6 ST S8 S9 SA SB

12
sC

13

LU

LRI RN A A A)

15

L Ll

CHAPTER J
INPUT/OUTPUT STRUCTURE

The Apple’s Input and Output functions Fall into two basic categories: those functions which are
performed on the Apple’s board itself, and those functions which are performed by peripheral
interfuce cards plugged into the Apple’s eight peripheral ™ slots”, Both of these functions com-
municate 10 the mi and your prog via 4,096 locati in the Apple’s memaory
map. This chapter describes the memory mapping and operation of the various input and output
controls and functions; the hardware which executes these functions is described in the next
chipler.

BUILT-IN 1I/0

Most of the Apple’s inherent 1/0 fagilities are described briefly in Chapter 1, “Approaching your
Apple”. For a short description of these fic . please see that chapter,

The Apple's on-board 17O functions are controlled by 128 memory locations in the Apple’s
memory map, beginning ut location SCAMA and extending up through location SCATF (decimal
49152 lhmugh 4927'5‘ or -16384 |hmugh -16257). Twenty-seven differemt Tunctions share these
128 E are affected by more than one location: in some
instances, o5 m.my us sixteen different locations all can perform exactly the same function. These
128 locations full into five 1ypes: Data Inputs, Strobes, Soft Switches, Toggle Switches, and Flag
Inputs.

Data Inputs. The only Data Input on the Apple board is a location whose value represents the
current state of the Apple’s built-in keyboard. The uppermost bit of this input is akin 1o the Flag
Inputs (see below); the lower seven bits are the ASCI code of the key which was most recently
pressed on the keyboard.

Flag Inputs. Most built-in input locations on the Apple are single-bil ‘fugs”. These flags appear
in the hi;hesi feighth) hit position in their respective memory locations, Flags have only two
values: “on” and “off". The sei ng of a flag can be 1ested easily from any language. A higher-
level language can use 4 “PEEK™ or similar command 10 read the value of a Nag location: if the
PEEKed value is greater than or equal 1o 128, then the flag is on; if the value is less than 128,
the flag is off. Machine language programs can load the contents of a Mlag location into one of the
6502's internal registers (or use the BIT instruction) and branch depending upon the setting of
the N (sign) flag. A BMI instruction will cause a branch if the flag is on, and a BPL instruction
will cause a branch if the flag is ofl

The Single-Bit (Pushbutton) inputs, the Cassenie input, the Keyboard Strobe, and the Game Con-
troller inputs are all of this 1ype.

Strobe Outputs. The Unility Strobe, the Clear Keyboard Strobe, and the Game Controller Strobe
are all controlled by memory locations, I your program reads the contents of one of these loca-
tions, then the function associated with that location will be activated. In the case of the Utility
Strobe, pin 5 on the Game 1/0 connector will drop from +5 volis 1o 0 volts for a period of 98
microseconds, then rise back 1o +5 again; in the case of the Keyboard Strobe, the Keyboard's
flug input (see above) will be tumed off; and in the case of the Game Controller Strobe, all of the
flag inputs of the Game Controllers will be turned off and their timing loops restarted,

Your program can also trigger the Keyboard and Game Controller Strobes by writing to their con-
trolling locations, but you should not write 1o the Utiliy Strobe location. 1T you do, you will pro-
duce o 98 microsecond pulses, sbout 24.43 nanoscconds apant, This is due 1o the method in
which the 6582 writes to a memory location: first it reads the contents of that location, then it

T8

writes over them. This double pulse will go unnoticed for the Keybourd and Game Controller
Strobes, bul may cause problems il it appears on the Liility Strobe.

Toggle Switches, Two other sirobe oulputs are connected internally 1o wo-st fip-Mlops™
Euch time you read from the location sssociated with the strobe, its flip-flop will “toggle™ to iis
other state, These toggle switches drive the Cassette Output and the internal Speaker. There is
no practical way 10 determine the setting of an nal toggle switch. Because of the nature of
the toggle switches, you should only read from their controlling locations, and not write 10 them
isee Strobe Outpuls, shovel.

Soft Switches. Soft Switches are iwo-position switches in which each side of the switch is con-
trofled by an individual memory location. I you relerence the location for one side of the
switch, it will throw the switch that way: if you reference the location for the other side, it will
throw the switch the other way, [t sets the switch without regard 10 its former setting, and there
is no way 1o determine the position a soft switch is in. You can safely write 1o soft switch con-
trolling locations: two pulses are as good as one (see Strobe Outputs, above). The Annuncialor
outputs and all of the Video mode selections are controlled by soft switches.

The special memory locations which control the buili-in Input and Output functions are srranged
thus:

S8 S 52 53
SCMM | Keyboard Data Input
SCAIB | Clear Keyboard Strobe

SO0 | Cassene Ouiput Toggle

SCO3B | Speaker Togele

SCP4B | Unility Strobe

SCB5® | wr | 1x | nomis [mn [oni [sex [Jores
SCR6M | oo [ot | o2 [ed [k !i.:l_ e
SC78 | Game Controller Strobe

anl anl and
repeal SOB6H-S080T

Key to abbreviations:

gr Sel GRAPHICS mode v Set TEXT macde
nomix Selall text or graphics mix Mix text and graphics
pri Display primary puge sec Display secondary page
lores Isplay Low-Res Graphics hires Display Hi-Res Graphics
an ARAUBGEIOT OulpULs pb Pushbuiton inputs
g Game Controller inpuis cin Cassette Input

PERIPHERAL BOARD 1/0

Along the back of the Apple’s main board is a row of eight long “'slots”, or Peripheral Connec-
tors. Into seven of these eight slots, you can plug any of many Penpheral Interface boards
designed especially for the Apple. In order to make the peripheral cards simpler and more versa-
tile, the Apple’s circuitry has allocated a to1al of 280 byte locations in the memory map lor each

7

of seven slots. There 15 also a 2K byte “‘common area”, which all peripheral cards in vour Apple
can share

Each slot on the board is individually numbered, with the leftmost slot called “Slot 8" and the
rightmosi called “Slot 7. Slot @ is special: it eant for RAM, ROM, or Interface expansion
All other slots (1 through 70 have special control lines going 1o them which are active at different
times for different slois

PERIPHERAL CARD 1/0 SPACE

Each slot is given sixteen locations beginning at location SCBS® for general input and output pur-
poses. For slot @, these sixteen locations fall in the memory range SCPS@ through SCAEF; for
%Im l they're in the range scm lhmugn SCWIF, er cetera. Easch peripheral card can use these

as it pleases. Each heral card can determine when it is being selected by listening 1o
pin 41 fcalled DEVICE SELECT) on its peripheral conneetor. Whenever the voltage on this pin
drops 1o 0 volts, the address which the ng is in that peripheral
card's 16-byte allocation. The peripheral card can then Ionl: at the bottom four address lines 1o
determine which of its sixteen addresses is being called.

i Table 23: Peripheral Card 1/0 Locations
S0 S1 82 33 sS4 S5 Sk S1 S8 S0 SA SB SC SD SE SF
SCRER L]
SCRoR]
SCRAR 2
SCeBe Input/Output for slot number 3
SCRCR 4
SCRDA 5
SCRER [
SCRFR 7

PERIPHERAL CARD ROM SPACE

Each peripheral slot also has reserved for it one 256-byte page of memory. This page is usually
used to house 256 hytes ar ROM or Fmg:ammabte ROM (PROM) memaory, which contains driv-
ing or for the peripheral card. In this way, the peripheral interface cards
<an be “intelligent™: they contain their own driving sofiware; you do not need 10 load separate
programs in order to use the interface cards.

The page of memory reserved for each peripheral slot has the page number SCn, where » is the
slot number. Slot @ does not have a page reserved for it, 50 you cannol use most Apple interface
cards in that slot. The signal on Pin | (called T70 SELECT) of each peripheral slot will become
active (drop from +5 volts 10 ground) when the microprocessor is referencing an address within
that slot’s reserved page. Peripheral cards can use this signal to enable their PROMS, and use the
lower eight address lines to address each byte in the PROM.

E—— le 24: Peripheral Card PROM Locations
T [SM@ S1@ S20 S0 S40 S5@ S0P S70 SHD S0P SAW SHA 5K0
SC18 I
SC200 2
SCI0 3
SC4M PROM space for slot number 4
SO0]
SChe 6
SCT00 7

1/0 PROGRAMMING SUGGESTIONS

The programs in peripheral card PROMs should be portable: that is, they should be able 1o func-
tion correctly regardless of where they are placed in the Apple’s memory map. They should con-
tain no absolute references 1o themselves. They should perform all JuMPs with conditional or
forced branches,

OF course, you can fill a peripheral card PROM with subroutines which are mer portable, and your
only loss would be that the peripheral card would be slot I If you're i for space
in a peripheral card PROM, you can save many bytes by making the subroutines slot-dependent.

The first hat 4 subrouting in a peripheral card PROM should do is to save the values of alf
of the 6582°s internal registers. There s a subroutine called IOSAVE in the Apple’s Monmitor
ROM which does just this. It saves the contents of all internal registers in memory locations 543
through $49, in the order A-X-¥-P-5. This subroutine starts at location SFF4A. A companion
subrouting, called IORESTORE, restores alf of the internal registers from these storage locations.
You should call this subroutine, located at SFF3IF, before your PROM subroutine finishes,

Most single-character input and outpul is passed in the 6502°s Accumulator. During output, the
character to be displayed is in the Acc It with its high bit set. During inpul, your
subrouting should pass the character received from the input device in the Accumulator, also
with its high bit set.

A program in a peripheral card’s PROM can determine which slol the card is plugged into by exe-
cuting this sequence of instructions:

LEIT R 28 4A FF ISR SFF4A

LETER 18 SEl
LEIES 28 58 FF ISR SFFS8
BIA7- BA TSX

LELLE BD @@ 81 LA Seie8. X
LELLE ED F§ @87 5TA S0TF8
BIBE- 29 #F AND #S@F
LERE B AR TAY

After a program exccutes these steps, the slot number which its card is in will be stored in the
6502's Y index register in the format $8r, where o is the slot number, A program in the ROM
can further process this value by shifting it four bits 1o the left, to obtain S,

e3nl- 98 TYA

8312- L 53 ASL

@313- [EY ASL
#3l4- BN ASL
#315- L5 ASL
#il6- AN TAX

A program can use this number in the X index register with the 6582°s indexed addressing mode
1o refer to the sixteen 10 locations reserved Tor each card. For example, the instruction

B37- BD B8 C@ LA SCHED X

will load the 6582's accumulator with the contents of the first 170 location used by the peripheral
card. The address SCBED is the base address for the first Jocation used by all eight peripheral
slots. The address SCBE] is the base address for the second 1/O location, and so on. Here are
the base addresses [or all sixteen L0 locations on cach card:

= /0 Locatio =
— - =
Address L] 1 2 k] §
SCPRR | SCPS@ SCR99 SCRAR SCaBR SCADA
SCHE1 SCRR1 SCH| SCAAL SCHBI SCAD|
SCHE? | SC@E2 SC#92 SCPA2 SCPB2 SCAD2
SCH3 | SC@E3 SCM3 SOPAI SCPB3 SCD3
SCH4 | SCEE4 SC#94 SOPA4 SCPB4 SCAD4
SCO85 | SCRES SC@95 SOPAS SCPBS SCODS
| SC#86 | SCBE6 SCP¥% SCPA6 SCPB6 SCOD6
SCH8T | SCBRT SCP9T SCPAT SCPBT scen?
SCRSS | SCRSE SCP98 SCRAS SCPBS SCADS
SCPRS | SCP89 SCP99 SCRAY SCPR9 SCAD9
SCOEA | SCESA SCH9A SCOAA SCBBA SCADA
SCBEB | SCEB SCW9B SCRAB SCOBB SCADR
SCRSC | SCOSC SCRYC SCAAC SCBBC SCADC
SCESD | SCRED SCMID SCRAD SCABD SCeDD
SCRRE | SCHBE SOWIE SCBAE SCRBE SCADE 3 E
SCHSF | SCOBF SCWIF SCRAF SCOBF SCODF SCREF SCOFF
110 Locations

PERIPHERAL SLOT SCRATCHPAD RAM

Each of the eight peripheral slots has reserved for it 8 locations in the Apple’s RAM memaory.
These 64 locations are actually in memory pages $84 through $87, inside the area reserved for the
Text and Low-Resolution Graphics video display. The contents of these locations, however, are
wov displayed on the screen, and their contents are nol changed by normal screen operations.*
The peripheral cards can use these locations for temporary storage of data while the cards are in
operation. These “scratchpad™ locations have the following sddresses:

Sce “But . page 30

82

Table 26: 1/0 Scratchpad RAM Addresses
Base Slot Number
Address | 1 2 3 4 5 o i)

58478 SP47T9 SMTA SIMTB SMTC SMTD SBTE SIMTF
S@4rs SMEY SMEA O SIMEFB O SMFC SIMFD SIMFE SIMEFF
58578 SH5T9 S@STA SBSTB SBITC S@STD SBSTE S8STF
SB5FR SASF9 SBSFA SBSFB SRSFC S@SFD SBSFE SBSFF
58678 SM679 SBETA SB6TB SBETC S@6TD SBGTE S@GTF
Si6l8 SM6FY SBeFA SBOFB SBAFC SRGFD SBeFE SBeFF
S8778 50779 SATTA SMTTB SATTC SMTTD SMTTE SOTTF
SIS SATF9 SATFA SBTFB SRTFC SATFD SBTFE SATFF

Slot ® does not have any seraichpad RAM addresses reserved for it. The Base Address locations
are used by Apple DOS 3.2 and are also shared by all peripheral cards. Some of these locations
have dedicated functions: location STF8 holds the slot number (in the format SCad of the peni-
pheral curd which is currently active, and location S5F8 holds the skot number of the disk con-
wrolier card from which any active DOS was booted

By wsing the slot number S8u, derived in the program example above, a subroutine can directly
reference any of its eight scratchpad locations:

Bila- B9 78 04 LA SR478,
Biln- 99 F8 04 5TA SO4FE,
#ize- B9 78 @5 LA S@578,
#323- 99 F8 @5 5TA SO5F8,
B326- B9 78 #6 Lba SP678,
#329- 99 F8 06 5TA SO6F8 .,
B32C- Be 78 @7 [RREY 50778,
Bi2F- 99 F8 @7 5TA S8TF8,

Ll o L

THE CSW/KSW SWITCHES

The pair of locations 536 and 337 (decimal 54 and 55) is called CSW, for ““Character output
SWitch™, Individually, location 836 is called CSWL (CSW Low) and location 337 is called
CSWH (CSW High). This puir of locations holds the address of the subroutine which the Apple
is ly using for single-ch outpul. This address is normally SFDF@, the address of the
COUT subroutine (see page 30). The Monitor's PRINTER ([CTRL P|) command, and the
BASIC command PR#, can change this address 1o be the address of a subroutine in 3 PROM on
u peripheral card. Both of these commands put the address SCo@ into this pair of locations,
where # is the slot number given in the command. This is the address of the first location in
whatever PROM happens to be on the peripheral card plugged into that slot. The Apple will then
call this subrouting every time it wishes 1o output one character. This subrouting can use the
instruction sequences given above 1o find its slot number and use the 1/0 and RAM scratchpad
locations for its slot. When it is finished, it cun cither execute an RTS (ReTurn from
Subroutine} instruction, to return 1o the program or language which s sending the output, or it
can jump to the COUT subroutine at location SFDF®, 1o display the charscter on the screen and
then return to the program which is producing output.

Similarly. locations $38 and 39 (decimal 56 and 57), called KSWL and KSWH separately or KSW

B3

{Keyboard input SWitch) together, hold the sddress of the subroutine the Apple is currently
using lor single-character inp This address is normally SFDIB, the address of the KEYIN
subroutine. The Monitor’s KEYBOARD command ([C K} and the BASIC command IN#
both change this address to SCM, again with « the sl mber given in the command. The
Apple will call the subroutine at the beginning of the PROM on the peripheral card in this slot
whenever it wishes 10 get a single (hanu.lc! from the input device. The subroutine should plice
the input character i The
subroutine should set the high bit of the character before it returns,

The subroutines in a peripheral card’s PROM can change the addresses m the CSW and KSW
swilches 1o point to places in the PROM other than the very begin
PROM could begin with a segment of code 10 determine what slot it
tion, and then jump in 1o the actual character handling subroutine,
sequence, it could change KSW or CSW {whichever is applicable} 1o point directly 1o the begin-
ning of the character handling subroutine. Then the next time the Appl: aﬂ&s for input or output
from that card, the handling ines will skip the already-d and go
right in 1o the task at hand. This can save time in speed-sensitive situations,

A peripheral card can be used for both input and output if its PROM has seperate subroutines for
the separate functions and changes CSW and KSW accordingly. The initialization sequence in a
peripheral card PROM can determine if it is being called for input or outpul by looking at the
high parts of the CSW and KSW switches. Whichever switch containg $Cn is currently calling
that card to perform its function. If both switches contain $Cn, then your subrouting should
assume that it is being called for output.

EXPANSION ROM

The IK memory range from location SCEM 10 SCFFF is n:ﬂ:n-cd for a 2K ROM or PROM on a
peripheral card, to hold large progr or driving The ion ROM space also
has the advantage of being absolutely located in the Apple’s mcmmy map, which gives you more
freedom in writing your interface programs.

This PROM space is available to all peripheral slots, am! more than one card in your Apple can
have an ron ROM. He -, only one ROM can be active al one time.

Each peripheral card's expansion ROM should have a flip-Nop 1o enable it. This Nip-flop should
be wrned “on’ by the DEVICE SELECT signal (the one which enables the 256-byte PROM).
This means that the expansion ROM on any card will be partially enabled after vou first reference
the card it is on. The other enable o the expansion ROM should be the 70 STROBE line, pin
20 on each peripheral connector. This line becomes active wh the Apnle 'S mi

is referencing a location inside the cxpansion ROM's domain, When line becomes active,
and the aforementioned flip-flop has been tumed “on™, then the Apple is referencing the expan-
sion ROM on this particular board (see figure 8).

A peripheral card’s 256-byte PROM can gain sole access to the expansion ROM space by referring
to location SCFFF in its initialization subroutine. This location is a special location, and all peri-
pheral cards should recognize it s a signal to turn their Nip-fops “off™ and disable their expan-
sion ROMs. Of course, this will also disable the expansion ROM on the card which is trying 10
grab the ROM space, but the ROM will be enabled again when the microprocessor gets another
instruction from the 256-byte driving PROM. Now the expansion ROM is enabled, and its space
is clear. The driving subroutines can then jump directly into the programs in the ROM, where

84

x

e 2

iR) —]
T

Figure 8. Expansion ROM Enable Circuit

they can enjoy the 2K of unobstructed, absolutely located memory space:

#332. 2C FF CF BIT SCFFF
LERLE 4C 09 3 IMp SCE00

It is possible 1o save circuitry (al the expense of ROM space) on the peripheral card by not Tully
decoding the special location address, $C In fact, if you can afford to lose the last 256 bytes
of your ROM space, the following simple circuit will do just fine:

E '}
e

e) . S

Y

Figure 9. SCFXX Decoding

85

‘CHAPTER 6
HARDWARE CONFIGURATION

THE MICROPROCESSOR

The 6582 Micraprocessor
Model: MCS6502/SY6582
Manuf: d by: MOS Technology, Inc.

Synertek
Rockwell

Number of instructions: 56
Addressing modes: 13
Accumulators: 1 (A]
Index registers: 2 {X.Y)

Other registers: Stack pointer (5)
Processor status (P

Stack: 256 bytes, fixed
Status flags: N (sign)
C (carry)
V {overflow)
Other flags: 1 (Interrupi disable)
D (Decimal arithmetic)
B (Break}h
Interrupts: 2 (IRQ, NMI)
Resets: | (RES)
Addressing range: 2'® (64K) locations

Address bus: 16 bits, parallel

Data bus: 8 bits, parallel
Bidirectional

Voltages: +5 volis
Power dissipation: .25 wall

Clock frequency: 1.023MHz

The microprocessor gets its main timing signals, & and ®1, from the timing circuits described
below, These are complimentary 1.023MHz clock signals. Various manuals, including the MOS

88

Peripheral Connec

USER 1
lumper

Eurapple
Jumpers

Speaker
Connector

Keyhoard

Connector

Figure 10. The Apple Main Board

89

Technology Hardware manual, use the designation @2 for the Apple’s @ clock.

The microprocessor uses ils address and data buses only during the 1ime period when @ is
active. When ® is low, the microprocessor is doing internal operations and does not need the
data and address buses.

The microprocessor has a 16-bit address bus and an 8-bit bidirectional data bus. The Address bus
lings are buffered by three 8T97 three-state buffers a1 board locations H3. H4, and H5. The
address lines are held open only during a DMA cycle, and are active al all other times. The
address on the address bus becomes valid about 300ns after @1 goes high and remains valid
through all of 4.

The data bus is buffered through two 8T28 bidirectional three-state bufers al board locations H10
and HI1. Data from the microprocessor is put onto the bus about 300ns after @1 and the
READ/WRITE signal (R/W) both drop 1o zero. At all other times, the microprocessor is either
listening 1o or ignoring the data bus.

The RDY, RES, TRQ, and NMI lines 10 the microprocessor are all held high by 33K Ohm resis-
1ors 1o +5v. These lines also appear on the peripheral connectors (see page 1051

The SET OVERFLOW (50} line 10 the microprocessor is permanently tigd 1o ground.

SYSTEM TIMING

Master Oscillator outp B ; iming signals are
derived from this signal.

™: Imermediate timing signal, 7.159 MHz.

COLOR REF: Color reference frequency, 3.580MHz. Used by the video gen-
eralion circuilry.

P (2D Phase @ system clock, 1.023MHz, compliment 10 1,
®l: Phase | system clock, 1.023 MHz, compliment to &9
03 A general-purpose timing signal, 1wice the frequency of the sys-

tem clocks, but asymmetrical,

All peripheral connectors gel the liming signals TM B, ¢1, and Q3. The timing signals 14M
and COLOR REF are not available on the periph

|
|
1
|
|
6582 Address >< 1 \
|

Data from 6582 (read) X b i S0 L A arctmary

manuals for details,
100 nsec —.1 b

Data to 6582 (write) X lx
| 5

Figure 11. Timing Signals and Relationships

9N

POWER SUPPLY

The Apple Power Supply (U, S, Patent #4,130,862)

Input voltage: 107 VAC to 132 VAC, or
214 VAC 10 264 VAC
{switch selectable®)

Supply voltages: 450
+11.8
=120
it

Power Consumption: 60 watts max. (full load)
79 watts max. (intermitient**}

Full load power output: 4+ 5v: 2.5 amp
= 5v: 250ma
+12v: L5 amp {— 1.5 amp intermittemt**)
=12v: 250ma

Operating temperature: 55¢ (131° Farenheit)

The Apple Power Supply is a high-voltage “switching” power supply. While most other power
supplies use a large transformer with many windings to convert the input voliage into many lesser
voliages and then rectify and regulate these lesser voltages, the Apple power supply first converts
the AC ling voliage into a DC voltage, and then uses this DC voltage to drive a high-frequency
oscillator. The output of this oscillator is fed into & small transformer with many windings. The
voltages on the secondary windings are then regulated to become the output voltages.

The +5 volt output vollage is compared 1o a reference voltage, and the difference error is fed
back into the oscillator circuit. When the power supply’s cutlput starts 1o move out of its toler-
ances, the frequency of the oscillator is aliered and the voliages return 1o their normal levels.

If by chance one of the output voltages of the power supply is short-circuited, a feedback circuit
in the power supply stops the oscillator and cuts all output circuits. The power supply then
pauses for about ¥ second and then attempts to restart the oscillations. If the output is st
shorted, it will stop and wait again. It will continue this cycle until the short circuit is removed or
the power is turned off.

If the output connector of the power supply is dlsconmc:ed from the Apple board, the power
supply will notice this “no load™ condi and eff tself. This activates the
protection circuits described above, and cuts all power output, This prevents damage to the
power supply’s internals,

= The voltage selector swisch is not present on some Apples.
** The power supply can run 30 minutes with an intermittent. load if followed by 10 minutes st normal losd
without damage.

Figure 12. Power Supply Schematic Drawing

93

If one of the output voltages leaves its tolerance range, due 1o any problem either within or
external to the power supply, it will again shut itsell down 1o prevent damage 1o the components
on the Apple board. This insurcs that all voltages will either be correct and in propertion, or they
will be shut off.

When one of the above fault conditions occurs, the internal protection circuits will stop the osc
lations which drive the transformer. After a short while, the power supply will perform a restart
cycle, and atlempt 1o oscillate again. I the faull condition has not been removed, the supply will
again shut down. This cycle can continue infinitely without damage to the power supply. Each
time the oscillator shuts down and restarts, its frequency passes through the audible range and
you can hear the power supply squeal and squeak. Thus, when a fault occurs, you will hear a
steady “click click click™ emanating from the power supply. This is your warning that something
is wrong with one of the voluage oulpuis,

Under no circumstances should you apply more than 140 VAC 1o the input of the transformer
{or more than 280 VAC when the supply’s switch is in the 220V position). Permanent damage (o
the supply will result.

You should connect your Apple’s power supply to a properly grounded 3-wire outlet. 1t is very
important that the Apple be connected 10 a good earth ground.

CAUTION: There are dangerous high voliages inside the power supply’s case. Much of the
internal circuitry is mov isolated from the power line, and special equipment is needed for service.
DO NOT ATTEMPT TO REPAIR YOUR POWER SUPPLY! Send it to your Apple dealer for
service,

ROM MEMORY

The Apple can support up to six 2K by 8 mask programmed Read-Only Memory 1Cs. One of
these six ROMs is enabled by a 74LS138 at location F12 on the Apple's board whenever the
microprocessor’s address bus holds an address between SD@#® and SFFFF. The eight Data oul-
puts of all ROMs are connected to the microprocessor’s data line buffers, and the ROM's address
lines are connecied to the buffers driving the microprocessor’s address lines A® through A8,

The ROMSs have three “chip select” lines to enable them. CS1 and CS3, both active low, are
connected together 1o the T4LS138 at location F12 which selects the individual ROMs. €S2,
which is sctive high, is common 10 all ROMs and is connected 10 the INH (ROM Inhibit) line on
the peripheral connectors. If a card in any peripheral slot pulls this line low, all ROMs on the
Apple board will be disabled.

The ROMSs are similar 10 type 2316 and 2716 programmable ROMs, However, the chip selects

on most of these PROMSs are of a different polarity, and they cannot be plugged directly into the
Apple board.

94

Al [T O M| 45w
A6 | 2 21| A8
AS | 3 2| A9
A4 | 4 |35
A3 |5 2 | G81
A2 | 6 19| AlQ
Al |7 18 | Cs2
AB | 8 17| D7
[16| D6
DI | 10 15| DS
D2 | ! 14| D4
Gnd | 12 13| D3

Figure 13. 93168 ROM Pinout.

RAM MEMORY

The Apple uses 4K and 16K dynamic RAMSs for its main RAM storage. This RAM memory is
used by both the microprocessor and the video display circuitry. The microprocessor and the
video display interleave their use of RAM: the microprocessor reads from or writes 1o RAM only
during @, and the video display refreshes its screen from RAM memory during @1,

The three T4LS153s a1 E11, E12, and E13, the 74L5283 at E14, and halfl of the 7418257 a1 C12
make up the address multiplexer for the RAM memory. They take the addresses generated by
the mi and the video and i them onto six RAM address lines. The
other RAM addressing signals, RAS and TAS, and the signal which is address line 6 for 16K
RAMs and TS for 4K RAMS, are generated by the RAM select circuit. This circuit is made up of
two 7415139 at E2 and F2, hall of a T4LS153 at location C1, one and a hallf 74L5257s a1 C12
and J1, and the three Memory Configuration blocks at D1, El, and F1. This circuil routes sig-
nals to each row of RAM, depending upon what type of RAM (4K or 16K) is in that row.

The dynamic RAMSs are refreshed automatically during 1 by the video generator circuitry. Since
the video screen is always displaying at least a 1K range of memory, it needs 1o cycle through
every location in that 1K range sixty times a second. It so happens that this action automatically
refreshes every bit in all 48K bytes of RAM. This, in i ion with the i ing of the
video and microprocessor access cycles, lets the video display, the microprocessor, and the RAM
refresh run at full speed, without interfering with each other.

The data inputs 1o the RAMs are drawn directly off of the system’s data bus, The data outputs of
the RAMs are latched by two 74L5174s at board locations BS and BS, and are multiplexed with
the seven bits of data from the Apple’s keyboard. These latched RAM outputs are fed directly to
the video generator's character, color, and dot generators, and also back onto the system data bus
by two 74L5257s at board locations B& and B7.

95

-5 | 10O 16 | Gnd -Sw | IO 16 | Gnd
DataIn | 2 15 | TAS Dataln | 2 15 | TAS
R/W | 7 14| Data Out RIW | 2 4| Data Out
RAS | 4 11| C8 RAS | 4 13| A6
AS |5 12| a2 AS | 5 12] A2
A4 |6 1| al Ad | 6 1| Al
A3 |7 0| Ap AY | 7 10| A
+iw | 8 9| +5v +1v | 8 ¢ | +5v
4096 4K RAM 4116 16K RAM
Pinout Pinout

Figure 14. RAM Pinouts

THE VIDEO GENERATOR

There are 192 scan lines on the video screen, grouped in 24 lines of eight scan lines each. Each
scan ling displays some of all of the contents of forty byles of memory

The video generation circuitry derives its synchronization and timing signals from a chain of
T4LS16] counters at board locations D11 through DI4. These counters generate fifteen syn-
chronization signals:
H@ HI H2 H3 H4 H5
V@ V1 V2 Vi V4
VA VB VC

The "H" family of signals is the horizontal byte position on the scr m SRR 1o binary
188111 (decimal 39). The signals V@ through V4 are the vertical line position on the screen,
from binary @#0®8 10 binary 18111 (decimal 23). The VA, VB, and VC signals are the vertical
scan line position within the vertical screen line, from binary 888 to 111 (decimal 7).

These signals are sent 10 the RAM address multiplexer, which turns them into the address of a
single RAM location, dependent upon the setting of the video display mode soft switches (see
belowl. The RAM multiplexer then sends this address 1o the array of RAM memory during @1
The latches which hold the RAM data sent by the RAM array reroute it 1o the video generation
circuit. The 74L5283 at location the memory add so that the memory mapping
on the screen is scrambled.

If the current area on the screen is 1o be a text character, then the video generator will route the
lower six bits of the data 1o a type 2513 character generator al location AS. The seven rows in
cler are scanned by the VA, VB, and VC signals, and the output of the character gen-
rialized into a stream of dois by a 74166 at location A3. This bit stream is routed 1o
an exclusive-OR gate, where it is inverted if the high bit of the data byte is off and either the
sinth is low or the 555 timer at location B3 is high. This produces inverse and flashing charac-
ters. The text bit siream is then sent to the video selector/multiplexer {below).

If the Apple’s video screen is in a graphics mode, then the data from RAM is senl o two
T4L5194 shift registers at board locations B4 and BY. Here cach nybble is turned into a serial
data stream. These two data streams are also sent to the video selector/multiplexer.

The 7415257 multiplexer at board position A3 selecis between Color and High-Resolution graph-
ics displays. The serialized Hi-res dot siream is delayed one-hall clock cycle by the T4LS74 at
location A11 if the high bit of the byie is set. This produces the alternate color set in High-
Resolution graphics mode.

The video selector/multiplexer mixes the two data streams from the above sources according 1o
the setting of the video screen soft switches. The T4LS194 at location AlD and the T4LS151 at
A% select one of the serial bit streams for text, color graphics, or high-resolution graphics
depending upon the screen mode. The final serial output is mixed with the compaosite synchroni-
zation signal and the color burst signal generated by the video sync circuits, and sent Lo the video
outpul conneclors.

The video display soft switches, which control the video modes, are decoded as part of the
Apple’s on-hoard 1/0) functions. Logic gates in board locations B12, B13, BI1, A12, and ALl are
used 1o control the various video modes,

The color burst signal is created by logic gates a1 BI2, B13, and C13 and is conditioned by RS,
woil L1, C2, and wrimmer capacitor C3. This trimmer capacitor can be tuned 1o vary the tint of
wolors produced by the video display. Transistor Q6 and its companion resistor R27 disable the
wolor burst signal when the Apple is displaying text

VIDEO OUTPUT JACKS

The video signal generaied by the aforementioned circuitry is an NTSC compatible, similar to an
ElA standard, positive composite video signal which can be fed to any standard closed-circuit or
studio video monitor. This signal is available in three places on the Apple board:

RCA Jack. On the back of the Apple board, near the right edge, is a standard RCA phono jack.
The sleeve of this jack is connected 1o the Apple's common ground and the tip is connected (o
the video output signal through a 200 Ohm i . This i can adjust the
voltage on this connector from 0 1o 1 volt peak.

Auxiliary Video Connector. On the right side of the Apple board near the back is a Molex
KK 100 series connector with four square pins, 257 wll, on 107 cemers. This connector supplies
the composite video output and wo power supply vollages. This connector is illusirated in figure
15,

Table 28: Auiliary Video Output Connector Signal Descriptions

Pin Name Description
1 GROUND System commaon ground: 0 volis,

2 VIDED NTSC compatible positive composite video. Black level is
about .75 volt, white level about 2.0 vol ne tip level is 0
volts, Output level is not adjustable. s not protected
against short circuits.

3 +12v +12 volt power supply.

4 —5v —35 volt line from power supply.

Auxiliary Videa Pin. This single me
tor supplies the same
point for Eurapple PAL,

irg-wrap pin below the Auxiliary Video Ouiput Connec-
deo signal available on that connector. It is meant to be a connection
“CAM encoder boards.

2

(=
[o[[o][o] [0] ———Connector
E Pin

12V

Figure 15, Auxiliary Video Output Connector and Pin.

BUILT-IN 1/0

The Apple’s built-in 1/0 functions are mapped into 128 memaory locations beginning at SCA8.
On the Apple board, a T4L5138 at location FI3 called the 1/0 sclecior decodes these 128 special
addresses and enables the various functions.

The T4L5138 is enabled by another “138 at location H12 whenever the Apple’s address bus con-
tains an address between SCMM and SCBFF. The 1/0 selector divides this 256-byle range into
cight sixteen-byte ranges, ignoring the range SCA88 through SCAFE. Each output line of the "138
becomes active (low) when its associsted |6-byte range is being referenced.

The “@" line from the /O selector gates the data from the keyboard connector into the RAM
data multiplexer.

The 1" line from the 1/0 sehector resets the 740574 Mip-Nlop at BI10, which is the keyboard flag

The 2" line toggles one hall of a 74L574 at location K13, The output of this flip-flop is con-
nected through a resistor network 1o the tip of 1he casselie outpul jack.

The =3 line 1oggles the other hall of the 74L574 a1 K13, The output of this flip-flop is con-
necled through a capacitor and Darlington amplifier circuit 1o the Apple’s speaker connecior on
the right edge of the board under the keyboard

pin is the

The 4" line is connected directly 1o pin 3 of the Game 1/0 connector, T

The ““5 line is used 1o enable the 7415259 at location FI14. This IC contains the sofl switches
for the video display and the Game 1/0 connector annunciator outputs. The switches are selected

98

/

w the address lines 1 through 3 and the setting of each switch is controlled by address line @

Ihe 6" line is used to enable a 74 I eight-bit multiplexer at location H14. This multi-
plexer, when enabled, connects one of its eight input lines 1o the high order bit (bit 7) of the
three-state system data bus. The bottom three address lines control which of the eight inputs the
multiplexer chooses. Four of the mux's inputs come from a 553 quad timer at location H13
The inputs 1o this timer are the game controller pins on the Game /O connector, Three other
inputs 1o the multiplexer come Trom the single-bit (pushbutton) inputs on the Game 1/0 connec-
tor. The last mubiplexer input comes from a 741 operational amplifier at location K13, The
input 1o this op amp comes from the cassette inpul jack

The " ling from the L/O selector resets all four timers in the 553 quad timer at location H13
The four inputs o this timer come from an RC network made up of four 0.022uF capacitors,
four 1060 Ohm resistors, and the variable resistors in the game controllers attached 10 the Game
1A connector. The total resistance in each of the four timing circuits determines the timing
characieristics of that circuit

SER 1" JUMPER

There is an unlabeled pair of solder pads on the Apple board, to the left of slot @, called the
“User 1™ jumper. This jumper is illustrated in Photo 8. I you connect a wire between these two
pads, then the USER 1 line on cach peripheral connectors becomes active. Il any peripheral card
line low, all internal 1/0 decoding is disabled. The T7O :CT and the DEVICE
5 all go high and will remain high while USER 1 is low, n.[urdlux of the addr
Ihn_ uddn:-.h bus.

The USER 1 Jumper

Phote 8, The USER 1 Jumper,

9

THE GAME 1/0 CONNECTOR

+5v | 1 O 16 | NC
PE# | 2 15 | ANG
PBI | 14 | ANI
PB2 | 4 13| AN2
o4 STROBE | 5 12| AN3
GCa | 6 11| GC3
GC2 | 7 0| Gel
Gnd | 8 9| NC
Figure 16,
Game 1/0 Connector Pinouts
Table 29: Game 1/0 Connector Signal Descriptions N
Pin: Name: Description: : _
1 +5v +35 volt power supply, Total current drain on this pin must be
less than 100mA.
24 PH8-Pi2 Single-bit (Pushbutton) inputs. These are standard T4LS serics
TTL inputs.
5 W40 STROBE A general-purpose sirobe. This line, normally high, goes low

during @ of a read or write cycle 1o any address from SCP4@
through SCR4F. This is a standard T4LS TTL output.

6,7.10,11 GOR-GC3 Game controller inputs. These should each be connected |
through a 150K Ohm varable resisior to + 5v.

8 Gind System electrical ground.

12-15 ANP-ANI Annunciator outputs. These are standard T4LS series TTL out-
puts and must be buffered if used to drive other than TTL
inputs.

.16 NC No internal

THE KEYBOARD

The Apple's built-in keyboard is built around a MM5740 monolithic keyboard decoder ROM.
The inputs to this ROM, on pins 4 through 12 and 22 through 31, are connected to the matrix of
keyswilches on the keyboard. The outputs of this ROM are buffered by a 7404 and are connected
1o the Apple’s Keyboard Connector (see below).

The keyboard decoder rapidly scans through the array of keys on the keyboard, looking for one
which is pressed. This ing action is lled by the fr ing oscillator made up of
three sections of a 7400 at keyboard location U4, The speed of this oscillation is controlled by
€6, Rb, and R7 on the keyboard's printed-circuit board,

- .

L I -

1 DY e BV Vo VA RV a DV B Y
= HEA T L

BVanYas
AP

JaiVa
BYe

101

Figure 17. Schematic of the Apple Keyboard

The key on the keyboard is connected 1o a 555 timer circuit at board location U3 on the
keyboard, This chip and the capacitor and three resistors around it generate the 10Hz “REPeaT™
signal, If the 220K Ohm resistor R3 is replaced with a resistor of a lower value, then the [REPT]
key will repeat characters at a faster rate

See Figure 17 for a schematic diagram of the Apple Keyboard.

KEYBOARD CONNECTOR

The data from the Apule s keyboard goes directly 1o the RAM data multiplexers and laiches, the
two T4L5257s at locations B6 and B7. The STROBE line on the keybwrd connector seis a
T4LS74 Nip-Nop at Jocation BID. When the 1/0 selector activates its “#"" line, the data which is
on the seven inputs on the keyboard connector, and the state of the sirobe Mip-flop, are multi-
plexed onto the Apple’s data bus.

Table 30: Keyboard Connector Signal Descriptions N
Name: Description:
+ v +5 volt power supply. Total current drain on this pin must be
less than 120mA.
2 STROBE Strobe output from keyboard, This line should be given a pulse
at least 10us long each time a key is pressed on the keyboard.
The strobe can be of either polarity.
3 RESE Microprocessor’s RESET line. Normally high, this line should
be pulled low when the button is pressed.
4.9.16 NC No connection.
5-7,10-13 Data Sewven bit ASCII keyboard data input.
B Gind System electrical ground,
15 =12y =12 wolt power supply. Keyboard should draw less than
S0mA.

102

+5v | 1O NC
STROBE | 2 —12v
RESET | 2 NC
NC | 4 Data 1
Dawa 5 | § Data @
Datad | 6 Data 3
Daaé | 7 Data 2
Gnd | & NC
Figure 18,

Keyboard Connector Pinouts

CASSETTE INTERFACE JACKS

The two female miniature phone jacks on the back of the Apple 1l board can connect your Apple
10 a normal home casselle lape recorder,

Cassette Input Juck: This jack is designed to be connected 1o the “Earphone™ or **Monitor™
output jacks on most lape recorders. The input voltage should be 1 voli peak-1o-peak (nominal).
The input impedance is 12K Ohms.

Cassette Output Jack: This jack is designed to be d to the “*Mi hone™ input on
most lape recorders. The output voltage is 25mv into a 100 Ohm impedance load.,

103

POWER CONNECTOR

“This connector mates with the cable from the Apple Power Supply. This is an AMP #9-35028-1
six-pin male connector,

Table 31: Power Connector Pin Description =

Pin: Name: 1]

1.2 Ground Common electrical ground for Apple board.

3 +5v +5.0 volts from power supply. An Apple with 48K of RAM
and no peripherals draws —1.5 amp from this supply.

4 +12v +12.0 volis from power supply. An Apple with 48K of RAM
and no peripherals draws —400ma from this supply.

5 —12v —12.0 volis from power supply. An Apple with 48K of RAM
and no peripherals draws —12.5ma from this supply.

3 —5v —5.0 volts from power supply. An Apple with 48K of RAM
and no peripherals draws ~0.0ma from this supply.

Figure 19, Power Connector

SPEAKER

The Apple’s internal speaker is driven by half of a 741574 flip-Nop through a Darlington amplifier
arcuit. The speaker connector is a Molex KK100 series connector, with two square pins, 257
tall, on 107 centers.

Signal Descriptions]

Table 32: Speaker Connec
Pin: Name: Description:
1 SPKR Speaker signal. This line will deliver about .5 walt into an §

Ohm load

| 2 +5v +3 volt power supply.

o | sexn
12]+sv

Figure 20. Speaker Connector

PERIPHERAL CONNECTORS

The eight peripheral connectors along the back cdge of the Apple’s board are Winchester
#2IHW25C0-111 50-pin PC card edge connectors with pins on . 10” centers. The pinout for these
connectors is given in Figure 21, and the signal descriptions are given on the following pages.

105

GND <5V
DMA IN DMA OUT
INT IN INT OUT
Al DMA
AG RDY
RES 170 STROBE
iNH NC
-12v R/W
—5v Al
N.C. Ald
™ A13
a3 A12
Rl Al
USERA 1 AlD
0 a3
DEVICE SELECT A8
o7 AT
D8 A6
DS A5
D4 A4
o3 A3
o2 A2
o1 A1
oo AD
+12v /0 SELECT

Figure 21. Peripheral Connector Pinout

! Table 33: Peripheral Connector Signal Description

| Fin: Name: Deseription:
1 /0O SELECT This line, normally high, will become low when
the microprocessor references page $Cu, where
o is the individual skt number. This signal
becomes active during & and will drive 10
LSTTL loads®. This signal is not present on
peripheral connector @,

217 AB-ALS The buffered address bus. The address on
these lines becomes valid during @1 and
remains valid through ®@. These lines will
each drive 5 LSTTL loads®.

18 RIW Buffered Read/Write signal. This becomes
valid at the same time the address bus does,
and goes high during a read cycle and low dur-
ing a write. This line can drive up to 2 LSTTL
louds®.

19 SYNC On peripheral connector 7 only, this pin is con-
nected 1o the video liming generalor’s SYNC
signal,

0 170 STROBE This line goes low during @ when the address
bus contains an sddress between SCEM and
SCFFF. This line will drive 4 LSTTL loads®.

n RDY The 6382°s RDY input. Pulling this line low
during ®1 will halt the microprocessor, with the
address bus holding the address of the current
location being feiched.

22 DMA Pulling this line low disables the 65025 address
bus and halts the microprocessor. This line is
held high by a JK 1) resistor to +5v.

23 INT OUT Daisy-chained ini Pt output to lower priority
devices. This pin is usually connected to pin 28
(INT IN).

4 DMA OUT Daisy-chained DMA output to lower priority
devices. This pin is usually connected to pin 22
1DMA IN)

25 +5v +35 volt power supply. 500mA current is avail-
able for all peripheral cards.

26 GND System electrical ground,

* Loading limits are for each peripheral card.

107

Peripheral Connector Sig
Description:

31

n

i3

34

35

36

7

8

39

INT IN

RES

—12v

=3¥

COLOR REF

™

Q3

L4

USER 1

Daisy-chained DMA input from higher priority
devices, Usually connected to pin 24 (DMA
OUTY,

Daisy-chained interrupt input from higher
priority devices. Usually connected to pin 23
(INT OUT).

Non-Maskable Interrupt. When this line is
pulled low the Apple begins an interrupt cycle
and jumps to the interrupt handling routine at
Iocation $3FB.

Interrupt ReQuest. When this line is pulled
low the Apple begins an interrupt cyele only if
the 6582°s | (Interrupt disable) flag is not set.
If s0, the 6582 will jump to the interrupt han-
dling subroutine whose address is siored in
locations $3FE and S3FF.

When this line is pulled low the microprocessor
begins a RESET cycle (see page 36),

When this line is pulled low, all ROMs on the
Apple board are disabled. This line is held high
by a KA} resistor to +35v,

=12 volt power supply. Maxmum current is
200mA for all peripheral boards,

=5 wolt power supply. Maximum current is
200mA for all peripheral boards.

On peripheral connector 7 enly, this pin is con-
necied to the 3.5MHz COLOR REFerence sig-
nal of the video generator.

TMHz clock. This line will drive 2 LSTTL
loads®,

IMHz asymmetrical clock. This line will drive
2 LSTTL loads".

Microprocessor's phase one clock. This line
will drive 2 LSTTL loads®.

This line, when pulled low, disables all internal
170 address decoding®*.

* Loadwng limits are for each peripheral card.

** Sce puge 99

108

Table 33 (cont’d): Peripheral Connector Signal Description

Deescription:

Pin: Name:

40 o

41 DEVICE
SELECT

4149 DD

50 +12v

Microprocessor’s phase zero clock. This line
will drive 2 LSTTL loads®.

This line becomes active (low) on each peri-
pheral connector when the address bus is hold-
ing an address between SC8mM and SCBaF,
where n is the slot number plus $8. This line
will drive 10 LSTTL loads®.

Buffered bidirectional data bus. The data on
this line becomes valid 300nS into 44 on a
write cycle, and should be stable no less than
100ns before the end of 44 on a read cycle.
Each data line can drive one LSTTL load.

+12 volt power supply. This can supply up to
250mA total Tor all peripheral cards.

® Loading limits are for each peripheral card.

Figure 22-1. Schematic Diagram of the Apple 11

1o

Figure 22-1. Schematic Diagram of the Apple 11

1

A

& > :

L t_:‘

: i

RS

b "_1:

: §

5 I,

= .

L }‘_ = ::

st

a2l ag

Figure 22-3. Schematic Diagram of the Apple 1

Figure 22-4. Schematic Diagram of the Apple 11

L]
|

Figure 22-5. Schematic Diagram of the Apple 11

114

o
-

!i!i?

Figure 22-6. Schematic Diagram of the Apple 11

15

APPENDIX A
THE 6502 INSTRUCTION SET

6502 MICROPROCESSOR INSTRUCTIONS

ADC A3 Memory 1o Accumatator wih LDA Loas Accumsimtor with Memesy
LD Lows doaen X win Memory

AND “AND" Mamory wih LDY Lows tocen ¥ wi Mmory

AL S Lew One B Semery o LER 5 Aught ame Bt tMamary o0

Accumuision Aceurmutater!

BCC Branch on Carey Clase MOP e Comaten

o Bl lentocrieead ORA DR Memsry win Arsusulsio:

AT ——— PHA Pusn Accumimtor on Steck
PHP Fush Peocassor Status on Sk
PLA Pus Ascumutator from Stack

B Sonen on Paa s R - e

BPL Branch on Amsut us ROL ostase Ore B4 Lt emary or

BAK Force Break

BYC Branch on Overtiow Ciaar RO Rotuss One Bi Fight iMemory o¢

BYS Dranch on Overtion fet i s

ac o Rt o inaeeript

e e ATB Retuen from Subreution

CUL Coue Intmrrupt Dusasie B8 BBC Bubwuet Memery Irom Acsumslanr

CLV Cum Ovardom Fing = Borom

CMP Compare Mamsry wnd Accumsisior SEC Se Carry Flag

CPE Compare Memary and Inses X $ED Sat Dacireal Mhocm

CPY Compare Mamery and Insas ¥ BE Set ioawrrupt Dbl Sewtus

orc Mamary by G & Aczumumion in Memry

DEX Desrament indes 4 by O STE Stons indax X in Memory

OEY Dscramant incus ¥ by G BTY Suoe insan ¥ in Memory

EOR “Bxciusive-Or" bemsry with TAX Transher Accumussion b bedes X
TAY Transhe Accumuision i lades ¥

B et My TEK Transhw Stmck Poimer b0 inden X

-1 sremsiz-hudrion LT ——————

S ot e b O TEB Teansier ingen X b5 Subck Pomer
TYA Teasates inges ¥ b Accumuibton

SN Jump s Mew Location

JER Jump e b Locaton Saving

118

==

-

o 1T LATRRSR SRR AL

THE FOLLOWING NOTATION
APPLIES TO THIS SUMMARY:

FIGUAE 1 ABL-BHIFT LEFT ONE 81T OPERATION

FIGURE 2 ROTATE OWE BIT LEFT (MEWORY
OR ACE Te)

Program Countar Low MOTE 1. BIY — TEST BITS

it 6wt e - itk
PHuuit 0l A A M 8 2ern then 211, otherste 240

119

PROGRAMMING MODEL

—— PR

T]

——— TR

7 o

[m— TR
1§ 7 []

| PCL | PRoGRAM counTER

T o
sracx romien

1 o
w[v][e[a]: PROCESS0A STATUS AEGISTER, F

| L canny
2ERD
INTERRUPT DISABLE
DECIMAL MOCE
— COMMAND

BREAK
AF

NEGATIVE

INSTRUCTION CODES

il

[
N tparation Aedreming LA ARE)
Deaer gt et) Code |y | WICIDW
ADC
#od memory AM-C AL | Immedaie | ADC sOper 1 | wiveey
e NEEA
© Fage.
Abalior ADC Doer 3
Absphute X | ADC OperX 3
Msalete T | ADC foer ¥ 1
indirectX) | ADC i0pes X} H
= Indivectl Y| ADC_iGperi Y 2
AND
WA memory with AAM A | inmagians | 44D sper 2| W
Zero Page AND Dper 2
Zero Page ¥ | AMD Dpwrt z
Abashute AN Oper)
Abmghie X | AKD Dper X 3
Naiumir | oo mrn H
incienct ¥) :
- fadeectY | AND(Oper) ¥ H
AsL
S left e st fee Figue 1) | Accumumer | ASL A 1| e
IWemary o Accumgtasar) Zurs Page ASL Oper H
Zwra PageX | ASL Oper X 2
Mgsolate | ASL Dper 3
Mosokite s | KSL Dot E]
BeC
Branch on carry clear Branch an C-D | Relasse BCC Dpar § | ==
Brasch an carry sst Beanch an €1 | Helatve BCS Dper 2] ——
Branch oe result zera Beanch o 7-1 | Relabive BEQ Dper LB} 2 =~
Tont ety i memory. MKMWy | Tero Fage | BT dper M2 -
wn T ow |x]| 3|4
BMi
| Beanch on revall misus | Branch on W= | Betative | B Oper » |2 e
| Beanch en rewal aod rero | Branch on 2-0 | Retative BNE Oper m| 2 e
BPL
[Branch on reiufl plas | Branch an W-0 | Relanive BPL aper wle| -——
BRK
Force Breah Farced Implet e LARE
Inierrugt.
L2
BVC
Branch on svertiaw clear | Brasch s V-0 | Relasees VE Oper m| 2] —
e -

et et b

121

BUgddls |s|e]d 4]

21 | | | | | ~ewmenne] own| owe| wwen] - | -

YMIQ& .;M L 2 L] 2 BSER2RGE 238 a8 k-1 111 3 3
O m peiaiidd FITINS ST

_m 4 8 = 3| HNEEEEEE EEE| EEE| HuEE § | B
T she| #Rs

R R

i I EAE

11171 ol [B e

H § s i T |1 =

{ R AR

AR bl bl Ll

Yadasa mipll [elifpli jeit malil

122

e
Y TR
Y —
i
iy

nemanans mumel o o ael o= e
FORAYRASS| Srme| = 8| g R FI2IWESS| YTEYE| FIINE
. —

i niag pil

IYITTT i s
EESEEEEEE| wwews| 2 3 83 § 33333333 55553 B3EEE
- - P ¥ 3 = 3 =

LR R
HE I i .

H R 4)

| I
dd LA a L

shi el lelaileitlsi gt b

123

[TR0
e e e .

sl | J|
Vi o B x| 0] B
d s e

d e)t ! |

il 2 m it m mw il

124

[Gparation | Attresing

Bestrigion war
Retum iram iniesrupe | PAPCH Impiee
WS =
Retum fram subrautme | PCY. PC-1 —=PC| inplied RIS [.
58C
Subtraci memory fom | &M= |mmeduie | SBC aOper B 2] VW
accumusaies wih Zen Fage | SBC Cper e |2
o Pagex |SBC Cperx | F5 | 2
SBC Oper L]
Absshue X | SBC OgerX L E]
AbsshieY | SBC Opery | F3 | 3
findwperX) | SBC (per® | E1 2
Madwpcti? | SBC tperi¥ | F1 £l
SEC
S cary fag 1=t Ingiee SEC [N
5ot gecmal mode 1=0 Ingiied SED R
Sen intestupt daabie Inpies 58] -
|t —
5TA
Eaate aceamunar A= w2 —--
ey LBk
0|2
o3
LR
n 7
M|z
TX
Sante mgwn X 0 mamary | b w || —
= |z
L3 3
Store mges ¥ in memary | ¥ =M w|r| ———-
- Ed
=]
TAX
Trusater accumuiains | A =¥ ingiine ™ o] -
0 index &
TAY
Trasater accumulato: A=¥ mpig Tar M| wee—
0 inex ¥
Trasater ack purie | § =0 impiies L] Y R
59 index 8

125

i [(o I -) S
.____m oot L Cade Byms| NICIDW
Transter wdes X = Impied XA “ 1 W
L] rrulstar
XS
Transter mdax X 18 X=5 Impied s L] 1 | ===
sach ponien
TR
Transter index ¥ YA Inphed v o || we-
16 accumulaior 1 ul

HEX OPERATION CODES

i i
i] M oy
BRI RN RN
wuwvummmmmmmw,xmmmmmmmmu R R H T 1
uyn ﬂuunu unnumw&.miﬂmhmmMMMmmmmmmmmmmubhmmmmmm

flmg

PR
wumuwwmummmummmm» mu»ﬁmmummnﬁm%mmmwmm»wquumnwmm

]
wm unnsu 'nnutnusm‘euuunuuauncmudwmnuk”ayuuuauw

= eurmet, %1

RN
wmwwmmnmmmummwnwum”wmmmevammnummmwmm.wnw ¢

o = ORA — tingewmt 1

x
u
w

127

B4 — LOY — Zem Page. X o8 —nor
85— LDA — Zevs Fage X BC — Mo
LOX — Zers Page. ¥

B
L

R

L

§EBEREGIERAGARERGANNES

128

APPENDIX B
SPECIAL LOCATIONS

Table 1: Keyboard Special Locations

Location: EOE o
Hex Decimal Desciption;

SCOB@ 49152 -16384 Keyboard Data
SCP1@ 49168 -16368 Clear Keyboard Strobe

Table 4: Video Display Memory Ranges
Begins at: Ends at:
coieen Page Hox . Decimal Hex Decimal
Text/Lo-Res Primary S48 1824 STFF 047
Secondary S30@ 048 SBFF 3871
Hi-Res Primary S2808 8192 SIFFF 16383
Secondary $4800 16384 $5FFF 24575

Table 5: Screen Soft Switches

Location: e

Hex Docimal Description:
SC85@ 49232 -16304 Display a GRAPHICS mode.
SOPS1 49233 -16303 Display TEXT mode.
$CP52 49234 -16382 Display all TEXT or GRAPHICS.
SO853 49235 -16301 Mix TEXT and a GRAPHICS mode.
SCP54 49236 -16380 Display the Primary page (Page 1).
SCPSS 49237 -16299 Display the Secondary page (Page 2).
SCP56 49238 -16298 Display LO-RES GRAPHICS mode.
SCB57 49239 -16297 Display HI-RES GRAPHICS maode.

Table 9: Annunciator Special Locations
Address:

AN St Decimal Hex
[] off 49240 16296 3CO58
on 49241 -16295 3C@59
1 off 49242 -16294 SOBSA
on 49243 -16293 SCASB
2 off 49244 -16292 3C@5C
on 49245 -16291 3C8sD
3 off 49246 -16299 SCOSE
on 49247 -16289 SCO5F

130

Tabl t/ Ot Locations
Function Admn 4 1 Hex Read/Write
Speaker 49208 -16336 SCO3@ | R
Cassctie Out | 49184 -16352 SCO28 | R
Cassetie In 49256 -16288 SCa6d R
Annunciators | 49248 -16296 SCBs8 R/W
through through through
49247 -16289 SCB5F
Flag inputs | 49249 -16187 SC@61 | R
49258 -16286 SC862 R
49251 -16285 SC@63 | R
Analog Inputs | 49252 -16284 SCP64 | R
49253 -16283 SCP65
49254 16282 SCP66
49255 -16281 SCR6T
Analog Clear | 49264 -16272 SC87@ R/W
Utility Strobe | 49216 -16328 30948 R
Table 11: Text Window ial Locations
. Location: Minimum/Normal/Maximum Value
Function | pecimal Hex | Decimal _Hex
Left Edge 32 328 | W39 0/308/517
Width 33 521 | @/40/40 S8/328/328
Top Edge 34 522 | M/0/24 S0/30/518
Boitom Edge 35 523 | #/24/24 S8/318/318
ble 12: Normal/Inverse Control Values
Value:
Decimal Hex Flloor
255 SFF | COUT will display in Normal mode.
63 $3F | COUT will display in Inverse mode.
127 $7F | COUT will display letters in Flashing mode, all
other in Inverse mode.

Location:

Decimal Hex Contents:

1018 $3F? Soft Eniry Vector, These two locations contain

1|1 $3F3 the address of the reentry point for whatever
language is in use. Normally contains SE@83.

182 S3F4 Power-Up Byte. Normally contains $45.

64367 SFB6F This is the beginning of a machine language

(-1169) ine which sets up the power-up location.

131

1808 $3FR Holds the address

1889 $3F1 of the subrouting
which handles

Naag; machine language

“BRK™ requesis
(normaly SFAS59).

1818 $3F2

1811 $3F1 None. Soft Entry Vector.

1812 $3F4 | None. Power-up byte.

1813 $3F5 | Holds a “JuMP" instruction to the

1814 $3F6 | subroutine which handles Applesoft 11

1815 $3F7 | “&" commands. Normaly $4C 358

SFF.

1016 $3F8 | Holds a “JuMP" instruction to the

1817 $3F9 | subroutine which handles “‘User™

1018 $3FA | (CTRLY))

1019 SIFB |Holds a “JuMP" instruction to the

1828 $3IFC suhmuum which handles Non-

1821 SIFD le Interrupts.

1822 SIFE |Holds the address of the subroutine

1823 $3FF | which handles Interrupt ReQuests,

Table 22: Built-In 1/0 Locations

59 SI 52 83 84 S5 S6 58 59 3A SB D

SCBM | Keyboard Data Input

SC818 | Clear Keyboard Strobe

Cassette Output Toggle

SCA38 | Speaker Toggle

Uility Strobe

SCAs b | anl an?

repeat SCRGH-SCIET

sr | ox | nomix | mix | pri | sec WIw
cin | gbl | pb2 | pbd | ool | gel | g2 | wed |

SC@78 | Game Controller Strobe

Key to abbreviations:

gr Set GRAPHICS mode tx Set TEXT mode
nomix Set all text or graphics mix Mix text and graphics
pri Display primary page Display secondary page

lores Display Low-Res Graphics Ill.ms

an Annunciator outpuls pb
g Game Controller inputs cin

132

Display Hi-Res Graphics

Pushbutton inputs
Cassette Input

Table 23: Peri)

58 51

52 83

54

I Card 1/0 Locations
59 SA 5B SC SD SE SF

$6 §7 3B

Input/Output for slot number

T .

Table 24: Peripheral Card PROM Locations

S8 S1@ 528 S3@ S48 S50 368 ST@ SB@ S99 SA@ SBA SC@ SD@ SER SF@
SCIM 1
SC2M 2
SCiM 3
SCadd PROM space for slol number 4
SC5M 5
SCodd 6
SCTM 7

Table 25: 1/0 Location Base Addresses

Buse Slot
Address [] 1 2 3 4 5 [7
SCasR SCP8@ SCA9P SCPA@ SCPBA SCOCe SCPD@ SORE® SCOFd
SCR81 SCPR1 SCH91 SCOAL SCPB1 S08C1 SCOD1I SCREL SCRF1
SCa82 SC@82 SC#92 SCPA2? SCPB2 SCRC2? SCOD2 SCRE2 SCF2
SCH83 SC@83 SC@93 SCPA3 SCPB3 SCRC3 SCOD3 SORE3 SCRF3
SCa84 SCP84 SC894 SCPA4 SCPB4 SCC4 SCOD4 SCRE4 SCOF4
SCa83 SCO85 O89S SCPAS SCOBS SCCS SCODS SCRES SCRFS
SC@B6 SCO86 SOP96 SCPA6 SCOB6 SCAC6 SCODe SCRE6 SCOFG
SC@87 SCORT SCP97 SCPAT SCOBT SCCT SCeDT SCRET SCRFT
SCPBR SCOBS SCP98 SCPAS SCOBE SCACE SCDE SCRER SCOFE
SCRE9 SCOE? 30999 3CPA9 SCOBY SC8CY SCeDY SCRE9 SCPFY
SCOBA | SCEBA SCP9A SCPAA SCOBA SCBCA SCBDA SCPEA SCOFA
SCHEB SCE8B SC@9B SCPAB SCPBE SCACB SCODB SCOEB SCRFB
SCOSC | SCBEC SCMC SCRAC SC@BC SCBCC SCEDC SCREC SCBFC
SC8ED | SC@SD SC@9D SCRAD SCOBD SC8CD SCeDD SCBED SCOFD
SCOSE | SCPSE SC®9E SCAAE SCPBE SCOCE SCODE SCBEE SCOFE
SC8RF | SCO8F SCP9F SCOAF SCOBF SCOCF SCODF SCBEF SCOFF

170 Locations

133

Address | 1 2 3 4 5 [7

$0478 $B479 S847A SB4TB SB4TC S@4TD SB4TE SMTF
SB4FE SB4F9 SB4FA SB4FB SBMFC SB4FD SB4FE SM4FF
0578 S8579 SB57A S@5TB S@STC S@STD SBSTE SRSTF
SBSFE $85F9 S@SFA SB5FB SBSFC S@SFD SOSFE S@SFF
$06TE $8679 SP67A SB6TB S@6TC SP6TD SPETE SP6TF
SB6FE SB6F9 SBEFA SR6FB SR6FC SREFD SPGFE SPGFF
0778 $8779 SB77A S@7TB SOTIC S@TTD SBTTE SRTIF
$OTFE SOTF9 SBTFA S@TFB SRTFC S@TFD SATFE S@TFF

134

APPENDIX C
ROM LISTINGS

AUTOSTART ROM LISTING

-
- APPLE 11
MONITOR 11

COPYRIGHT 1578 BY
APFLE COMPUTER. INC

W s R
.

3
serrian

ALL RIGHTS RESERVED

STEVE WOINIAK

MODIFIED NOV 1578
BY JOHN A

13
raaa

20 0" $FB00
21 opJ $2000

37 H2 EGU $2C
38 LMNEM EGU %2C
% w2 EGU $20

£ EOU 3%
57 PCL EGU $3A
58 PCH EGU %38
5% AlL EGU $3C
60 AlH EQU $3D
&1 EGU $3E
&2 AW EGU s3F
&3 A3L EQU $40
&4 AJN EQU $41
&3 ALl EQU sa2
&b AdH EGU %43
&7 ASL EQU s44
&8 ATH EOU 4%

i NOTE OVERLAP WITH ASH!

i NEW VECTOR FOR BRK

i WECTOR FOR WARM START

+ THIE MUST = EDA #8AS OF EOFTEV+]
4 APPLESOFT & EXIT VECTOR

113 BASICZ

Fl

11% PLOT

118

17 J5R GBASCALC

P

119 LDA ®#80F

120 BCC RTHASK

21 ADC #SED

122 ATMASK STA MASK

123 PLOTI LDA (GBASL). Y
coLoR

24 EDR

125 AND MaA:

126 EDR {(QBABL).Y
127 STA (GBABL). Y
iz8 RTS

129 HLINE JER PLOT

130 HLINEL CPY H2

131 BCS RTS1

132 Ny

133 JBR PLOTY

134 BEC MLINEL
135 VLINEZ ADC #s01

136 VLINE PHA

137 JSR PLOT

138 BLA

13% CHP V2

140 BCC VLINEZ
141 RTS1 RTS

137

TI2O8EEUITRTALERHEIT BY

3 ¥EF8F 0§

98%s

88230

FB

33

&
CLRECD LDA
8

SETCOL
=]

CLRECR LDY

CLATOP LDY
CLRSCZ STY

ADC
GBCALE BTa

IR

EHH

E

BCRN

47 21

SCANZ

1

e
EE

ATHSKI AND
2 RTE

4
INSDS1 LDX

ERR Loy

GETFMT Tax

GBABLALL
(GBASL), ¥

RTHSHI
A

A
A
a
wEOE

PCL

PCH
PRYXZ
PRELNK
(PCL. X}

A
IEVEN
A

ERR
AT
ERR
a7
A

FHTL. X
SCRNZ
GETFMT
580
.00

138

F2 233 BNE MMNNDX 1

ILEBCBESEEARIEATUARYRE

FFFF 237 DFB_$5F, 8FF, $FF

236 PAGE
20 82 F8 39 INSTDSP JSR INSDS1
a8 =40 HA
Bl 3A 241 PRNTOP LDA (PCLI.Y
20 DA FD 242 JSR PREYTE
A2 01 2a3 LDX #8001
20 4a F9 244 PRNTEL JSR PRELZ
c4 2F 243 CPY LENGTH
ca 248 Ny
0 F1 247 BCC PRNTOP
A2 03 248 LDX ®#%03
Co 04 249 CPY 8804
50 F2 250 BCC PRANTEL
&8 251 PLA
A8 @52 Tay
8% CO F9 @53 LDA HNEML. Y
es 2c 234 STA LMNEM
B% 00 Fa 283 LDA
85 20 258
A% 00 257 NXTCOL
AD 03 %8
os 20 5T PRMNZ
2e 2c 280
24 261
Be 262
Do FE 283
&% BF 264
20 ED FD 285
cA £
Do 267
20 268
Al 20F
az ar
E0 271 PRADR1
arz
273 PRADR2
274
ars
ave
an
278
Fiad
280 PRADRI X
281 BNE PRADR1
28s RTS
283 PRADR4 DEY
ans BMI PRADRZ2
285 JER PREYTE
286 PRADRS LDA FORMAT
287 CHP WsEB

139

2888 32

PIHEBSEERATES

o

a8
It
0
i+
&0
04
20
24
30

2F
aw

o1

3a

RELADR

PRNTYX
PRNTAX
PRNTX

PRELMK
PRELZ
PRELI

PCADY
PCADUR
PCADJI

PCADJS
3

RTS2
FMTL

LDA
BCC
Pal

JER
Tax
INE
EBNE
Ny
TVA
JEBR
TXA

TPCLY. Y
PRADRE

PCADJI

BRNTYX

PREYTE

LENGTH
PCH

PLADUS

FMTR

141

BABUBRAMER

EE SR S S S F R 4 E Y kS A S 4 R AR

§333335353353333383

DFE

142

07 DFE #AA
=08 DFE sA2
205 DFE A2
510 oFR 74
11 DFD 874
s12 DFB 74
513 OFE %72
514 DFE ®a4
s OFE &8
S1s DFE sB2
N7 oFE s32
s18 OFB
519 oFe
s20 DFB
21 DFE
sa2 DFE
S22 DFE
sa4 OFE
323 OFE
328 oOFE
327 DFE
s28 DFR
229 DFE
830 DFE
L3 DFE
532 DFE
532 DFB
34 DOFE
535 oFe
336 DFE
537 DFB
538 PACE
43 53¢ IRG
S40
41
a2
343
344
o3 343
FE 02 Sas
347 BREAK
AC FF 548
549
34 550
331
a8 52
FO 03 353 WY WRITTEN OVER BY DISK BOOT
B2 Fe8 354 OLDBRK
Dh Fi 333
&5 FF a8
357 RESET cLp i DO THMIS FIRST THIS TIME
B4 FE 588 JSR SETNORM
a*F FC 355 JSR INIT
¥3 FE S0 JSR SETVID
89 FE 341 J5R SETHBD
8 co S62 INITAN LDA SETAND i ANO = TTL HI
34 CO 343 LDA SETANI : ANI = TTL HI
30 CO 64 LMC‘LQ&N}.W-WLLU
9 co b LDA CLRAND i AN3 = TTL
FF CF Ses LDA CLRROW ; TURN OFF EITIBN ROM
10 €0 %67 BIT KBDSTRE ; CLEAR WKEYDOARD
S68 NEWMON CLD
34 FF 369 JER BELL i CAUSES DELAY IF MEY DOUNCES
F3 03 570 LDa mFTEV'l i 18 REBET HI
A 371 FUNNY COMPLEMENT OF THE
Fa 03 572 PWR UP BYTE 777
17 7 BNE PWRUP NO S0 PWRUP
F2 03 574 LDA SOFTEV : YES SEE IF COLD START
oF 578 BMNE MOFIX HAS DEEN DONE YET?
EQ 578 LDA #SED (g
F3 03 577 CHP SOFTEV+1 s 77
o8 578 ENE MOFIX | YES S0 REENTER SYSTEM
o3 579 FIXSEV LDY #3 i NO SO POINT AT WARM START

143

8C F2 03 580 BTY BOFTEY ; FOR NEXT RESET
4C 00 EO 381 JMP BABIC . AND DO THE COLD START
&C F2 03 382 NOFIX JMP (SOFTEV) ; SOFT ENTRY VECTOR
383
20 &0 FB SB4 PHRUF JSR APPLEIID
38% SETPEI EMU = i BET PAGE 3 VECTORS

A2 0% 38s LDX %3

BD FC Fa 387 SETPLP LDA PWRCON-1.X ; WITH CNTRAL B ADRS
9D EF 03 sas ETA BRKV=1,X ; OF CURRENT BASIC

ca 89 DEX

Do F7 add BNE SETPLP

A% CB 391 LDA #8CE8 i LOAD HI SLOT +1

B8& 00 bl ETx LOCO i BETPE3 MUST RETURN X=0
a3 01 293 STA LOCI . BET PTR H

AD 07 594 SLOOP LDY w7 i ¥ 18 BYTE PTR

Cé 01 598 DEC LOC1

AS 01 ELY LDA LOCT1

€% CO 297 CHP #8300 i AT LABT SLOT YET?

FO D7 98 BEG FIXSEV : YES AND IT CANT BE & DISK
BD FB 07 299 A MELOT

100 &00 NXTDYT LDA (LOCO). ¥ . FETCH A SLOT BYTE
D% 01 FB 601 CMP DIBKID-1.¥ ; 16 IT A DISK 77
D¢ EC 0T BNE SLOOP ; NO SO NEXT BLOT DOWN
B8 603 DEY

BE &04 DEY 4+ YEB 80 CHECK NEXT BYTE
10 F8 603 BPL NXTDYT & UNTIL & CHMECKED

&C 00 00 &0& JMF(LDCO)
[&07 nl:r
EA &08

609 * REGDSP PI.E7 o«c SFADT
20 BE FD 810 REGDSS

A5 43 &11 RGDSF1 LDA
a5 40 &1z 8TA
A% 00 &13 Lha
85 41 &1& 8TA
Az FD 819 LDX

JER
&I * LDA ACC#S,
DF!

B
20 DA FO &28 JSR PREYTE
EB &23 INE
0 EB &2& BMI RDSP1
TS

"
59 Fa &28 PWRCON DW OLDBRK
DFE 00, $EQ. $43

8
§

&30 DISKID DFD $20, $FF, 800, SFF
&31 DFE 300, $FF, $3C

TITLE DFE sC
3 DFE

t

8
388 8

&

o

DFE
&3% XLTBL EQU »
DFE

FF C3 637 DFE
DFE

o
3
[
2

&3% = MUST

€1 Dé D9 &40 RTBL M- 0%
] &al 03
AD 70 CO &42 PREAD

&43
AD 0O &4 LDY #3800
EA 443 Iﬂ’
EA b4
BD &4 CO 47 PREADZ LBQ PADDLO. X
10 04 4B BPL RTE2D
ce LTl INY
o &30 BNE PREADZ
ol 431 DEY

ATSI0D ATE
& INIT LDA

L
SETTXT LDA
L
SETGR LDa
L

SETWND
4

Tamy
APPLEL] JSR i CLEAR THE BCRN
LoY
STITLE LDA TITLE=1.Y¥ i GET A CHaR
ETA LINEI+14.Y
DEY
BNE STITLE
8

2 RT!
BETPURC LDA SOFTEV+L
EDR 88A3
FHREDUF
w
VIDWAIT i CMECK FOR A PAUSE
= ¢ DMLY WHEN 1 HAVE A CR
i NOT S0. DO ULAR
KBD + 18 KEY PRESSED?

NO
#8593 I8 ITCTL B ?

T MO S0 IGNORE

NOWAT
1 BIT MBDSTRE : CLEAR STROBE

MEDWAIT LDY WED i WAIT TILL NEXT MEY TO RESUME
3

BPL WBDWALT | WAIT FOR KEYPRESS
CPY es83 4 18 IT CONTROL C 7
DEG NOWAIT i YES 50 LEAVE IT

e DIT KBDSTRE i CLR STROBE

47 NOMAIT JHP VIDOUT : DO AS BEFORE

48 PAGE

49 ESCOLD SEC i INBURE CARRY SET

30 JmP ESCH

51 ESCHOW TAY i UBE CHAR AS INDEX

32 LDA XLTEL-8CY. ¥ i XLATE IJHM TO CBAD

53 JSR ESCOLD ; DO THIS CURSOR MOTION

54 JSR RDMEY © AND GET MEXT

55 EBCMEW CMP WSCE i 18 THIS AN N 7

36 BCS ESCOLD . N OR GREATER DO IT

57 CMP #sC% i LESS THAN 1 7

38 BCC ESCOLD YES S0 OLD WAY

29 CHP #slC P 19 ITAL?

&0 BEQ ESCOLD DO NORMAL

&1 BNE ESCMOW . G0 DO IT

&2 NOP

&3 NOP

&4 NP

&8s NOF

b NP

&7 war

&8 Noe

&9 L=

145

FIRREY

T2%ER38E

B% Ed8s 4Ed

8ER38559
a

FC
co
FS
P,
24 104 STORADV LDY CH
28 103 STA (BASL). ¥
24 106 ADVANCE H
24 107
21 108
3 109
110 ATS3
a0 111 VIDOUT
EF
EC
BD
S
Ba
5
Be
ce
24

130 VTAR
131 VTABI
13z
133
134 ATS4
o 13% ESCL
a8 136
FD 137
co 138
oA 139
FD 140
2 141
DE 142

8

5558

&

g

H

cs
A

e

BRERS

TEBBESILE 8AN

FC
FC

warT
WAITI

NXTAS

MXTAL

ADC
BCC

SAD
C(BABL), ¥

WNDWDTH
CLEDLZ

01
HAITI

#8017
WAITZ

AdL
NXATAL
AdH
ALL
AlH

AlL

147

+ RETURN
LR TO END OF PACE

BYEHGNETBAEREA5R208255888 808

EBBEES

SSBIBRAAE BSW BR BNMINE

-
]

»
-]

B33

co

WRBIT

IERDLY

ONEDLY

34
WRTAPE

RDBYTE
RDEYTZ

RD2BIT
RDBIT

KEYIN

KEYINZ
ol

NOTCR
2

sTA
LDA
JER
FLA
STA

AGE
L&

RTS4B

IERDLY
HWRTAPE
w32

DMEDLY
TAFEDUT
w20
08
RDIBIT

A
w3

RDBYTZ
RDBIT

TAPEIN

S3F
840
{BASLY. Y

INVFLG
SR
INVFLG
IN X
couT

INVFLG

148

READ KEYBOARD

BIBEYR

€D FD
HE FD

3s FD

ED FD

2 D

DA FD
BA FO

IE

FF
ac

BD
ED FD

CROUT
o

ROTCRY
CANCEL
GETLNT
GETLN

BOHSPC

DE
WA TCHAR
i

CAPTST

ADDINP

FRAT

PRYXD

RTS4C
LAHPF

PREYTE

”
#
LER &
A

149

EBHIFT TO UPPER CASE

w7

2838

BBELUEIBERE

we oo
mm s

FB

Fa
]

PRHEX
PRHEXT

couT
cOuT

couTz

BLL

ATSS
SETMODE

SETMDZ

LIST

LisT2

VIDWAIT &

YEAVL

MILY. Y
CAALD. Y
MX TG
MOVE

PALLY, Y
TAGLY Y
VYO
FRAL
CALLY. ¥
PREYTE
a%A0

INSTDEP
PCADY
PCL

PCH

©0 CHECK FOR PAUSE

1D

EE
ED
10
oo

ALPC

ALPCLP

ALPCRTS
SETINY

SETHNORM
SETIFLG

SETHRD

INFORT
INPRT

SETVID
OUTFORT
OUTPRT

10PRT

10PRT1
10PETE

XBASIC
BASCONT
G0

REGT
TRACE
+ TRACE

STEFZ

WRITE

wE

WRBYTE
WREYTZ

sBC
BRE

8TY
TS
LDA
ETA
LD
LDY
BNE
LDA
5TA
LD

#8001
LisT2

ALPCATS

AL, X
PCL. ¥

ALPCLP

#E3F
SETIFLE

WEFF

INVFLG

#3000
AL
LS

WHEYIN

T0PRT
waoo

BEG I0PRTZ2
WCOUT /256
-

LOco. X

Loc, ¥

REGDSP

GONE

(ALL, X}

CAIL. X}
WREYTE

NXTAL
wE10

Wil
o2

WRBYTE

BELL
ws10
&
WREIT

151

WIOADR /258
00

74, 200
*35. %01

STEP 1S QONE

4

93
B

FE

CRHOM

FRERA

BELL

2 RESTORE

RESTR1

SAVE
Er

DLDRST

NETITH

CHRASHCH

D1e

WRENTZ

HOKZ
RD2Z0IT
"ie

CHRKSUM
RDZEIT
weza
ROBIT
RDZ
ROBIT
wan
ROBYTE
TALL. XD
CHREUM
CHUSUM
NXTAL
wazs
AD3
ROEYTE
CHRSUM
EBELL
*eCT

w0z
couT
couT
387

SHP COUT

3
STATUS

asH
XREE
YREG

anH
XRED
YREG

BTATUS

SPHT

BETHDARM
INIT
BETVID
SETHED

BELL
R
PROMPT
CETLNI
IMODE
GETHUM

w17

Mo
CHRATBL. ¥
CHRSRCH
YSA

v
NXTITH
803

152

FFEA
FFER

4
NETRIT

NETBAS
L

NETESZ

GETNUM
o

NATCHR

IMoDE

CHATEL

¥l
SUBTDL

PERBD

AZL
M

NETBIT
MODE
NYTBSZ
ARH. X
AIH. ¥
AT ¥

NETBAS
NETCHR

oIG
wsED
"EEA
p1e

[Ty
SUBTBL. ¥

HODE
00
HODE

*BC
*E2
*EE
*037 .
BEF
*ta
*B2 i
®AS
*BE
AL
A4
08
=95
*07
202
*05
FO
00

153

T CHD NODW LIKE U8R

S CHD NOW LIHE UBR

154

MONITOR ROM LISTING

APELE
SYSTEM MOKRITCR

LOPTHIGHT 1977 8Y
APFLE COMPUTER, INC.

e e M

3. WOINIAK
A, EAUM

* ALL RIGHTS RESCRVED
.
.

“APPLE 11 SYSTLA MORTTOR"

CELE LR e

0 B o B e e

i4 AMNEM
35 ETSH
i MASK

155

Tu
71
12
73
74
73
ia
13
is
k]
e
4l
4z
43
a4
a3
de
a7
43
i3
G
41
£
43
a1
9B
9
97
4u
39
luu
iul b START ABDEESE
iud ‘.
Lus
Fa lud
1us
1k EVEN
1ud
Luz cog
U9 RTHASK TR MASK
11u PLOTL LA |GBASLI.Y VATA
111 EQH COLOR KOR COLOA
112 AND MASK AND MASK
113 EOR [GBASL},Y KOR UDATA
114 STA (GBASL),Y TO DATA
11% TS
FB 116 HLINE JER PLOT PLOT SCUARE
117 HLINEL CEY B2 DORE?
s BCS AT5L YES, HETURK
1% INY HO, INCR INDEXK (X-COORD)
F& 12u JSR FLOTI PLOT NEXT SCUARE
LaL BCC HLINE] ALWAYS TAKEN
122 WLINEZ ADC #%01 HEXT ¥-COGRD
123 WVLINE FHA SAVE ON STACK
Fa 124 JSR PLOT PLOT SQUARE
125 PLA
126 CMP V2 DOKE?
127 BOC WLINEZ HO, LOOF.
124 KT&1 RTS
123 CLRSCR LDY 352F MAX ¥, PULL SCRN CLR
Lig BNE CLRSC2 ALWAYS TAKEN
Lil cLatop LoY 9527 MAX ¥, TOP SCRN CLA
112 CLmsc2 ATY W2 STORE A5 30TTOM COORD
113+ FOR VLINE CALLS
L34 Loy g527 RIGHTACST X-COORD (COLUMNY
135 CLK3C3 LOA #5U TOP COORD FOR VLINE CALLS
1is STA COLOR CLEAR COLOR (BLACK)
FH 137 JSRE VLINE DRAN VLINE
1ig DEY HEXT LEFTMOST X-COORD
139 3FL CLRSCI LOOP UNTIL COKE.
140 RTS
141 GBASCALC PHA FOR INPUT UOODEFGH
142 LSR A

156

Fi 170

F9 195
Fa l¥s

GacaLe

HEICOL

SETCOL

SCRN

SCANZ

HTHSKZ

INSDS1

INEDSE

TEVEN

B8R

GETFMT

MHHDXL

LK

GBASCALD
1GBASLY. Y

ATHEXT
A

a
a

a
#EUF

PCL

ECH
PRYXZ
PRELNE
(PCL, X)

LENGTH

FHHF
#5023
aEEA
HMNDAY

A
MNHDK S
A

157

GENEBATE GDASH=000UO1FG

AKD GBAEL=HDECEUGD

INCREMENT COLOA BY 3

SETS COLOR=17%A HADD 16

HOTH HALF BY7TI

5 OF CCLOR EJUAL

FEAD SCREEN ¥=-COORD/Z
SAVE L3B {CARRY)

CALL BASE ADDRESS

GET BYTE

HESTURE L53 FROH CARRY
IF EVEN, USE LO W

SHIFT HIGH MALF BYTE DOWN
MASK 4-BITS

PRINT PCL,H

FOLLOWED BY A BLAKE

GET OF CGLE

EVEN/ODD TEST

81T 1 TEST
KEXXXXLL INVALID OF
CPCOGE 539 INVALID

MASKE BITS
LEE INTU CARHY FOR L/R TEST

GET FORILAT INDEX BYTE
RAL H-BYTE ON CARRY

SUBSTITUTE 3J¢ FCR INVALID OFS
SET FRINT FORMAT INCEX TG 0

TNCEX INTO PRINT FORMAT TASLE
SAVE FOR ADR FIELO FORMATTING
MALK POR 2-BIT LENGTH

AYTE, 2= DYTE)

CECODE

MAZE FUR 1NXKIdle TEST

SAVE IT

OPCODE TG A AGAIN

FORM IMDEX INTC MNEMONIC TAELE

ED

FE

Fa
2

Fy

T
FL
Fa

Fo

z
FO

F9

Fo

FD

MNNDKZ

MNNDX]

INSTDSP

PHNTOP

PRNTBL

PEAS1

PRAKZ

FRADEL

PRACRZ

PARDK 3

PRADRS

PRAURS

RELADR

PRENTYX
PRNTAX
PRNTX

PRBLNK
PRILZ
PRALI

A
3520

NNDEZ

HNNDKL

$FFP,5FF,5FF
ThNSE31

(BCL) . ¥
PRBYTE
w50l
PRELI
LEHGTH

MHEML, ¥
LMNEY

MNEMR, ¥
HMHES

PRADR T

FRADRZ
FREYTE
FORMAT
B5EE
IPCL) ¥
PRADA4
FCADI 3

PRNTYX

FREY¥TE

FPRBYTE
#5412
1540
cour

158

L) LXRXMélu=>001u14%%

Z) XEXYYYul=duulllXXX
I} ARKTYYLUeseul luXKX

4) XERAYYlub=siuludXxx
51 KXXXXUUG= SUOKENRN

GEM FMT, LEN B¥TES
SAVE WNEXOHTC TABLE [NUEX
PRINT 2 BLANES

FRINT INST (L-3 3¥IES)
iN & 12 CHE FIELD

CHAR COUNT FOK ANENGHIC PRINT

RECOVER MNEMGNIC INDEX

FETCH J-CHAR MNEMONIC
|PACRED IN 2-3YTES)

SHIFT 5 BITS OF
CHARMITER INTU A
{CLEARS CARRY)

ADC *?* OFPSET
SUTPUT A CHAR OF MNEM

OUTEUT 3 BLANKS

CNT FOR 6 FORMAT

IF X=3 THEW ADDR.

HANDLE REL AUR #ODE
SPECIAL (PEINT TARGET,
NOT CFFSET)

BCL, POMAGFFEETH] TO A, ¥
41 10 ¥,X
CUTPUT TARGET AUH

OF BFANCH AND RETURN
BLANE COUNT

LOAD A HPACE
GUTPUT A BLANK

ou Fé 2ay BNE PROLZ LOOF UNTIL COUNT=G
au 24y RTS

id 281 PCADJ 2EC 0=1-BYTE, 1=2-BYTE,
A5 2F 292 PCADJZ LDA LENGTH 2=i-BYTE
Ad 13 i3% PCADJI LDY PCH
A 244 TAX TEST DISPLACENENT SIGH
0 4l 295 BFL PCALJA {FCR REL BAANCE)
ad Zia DEY EXTENG %EG 8Y DECR PCH
65 1A 247 PCADJ4 ALCC PCL
@0 odl 254 9CC RTS2 PCLALENGTHICR DISPL)+1 TO A
L 244 1Ny CARRY INTC Y (PCH)
ad jud BTS2 ATS
jul - FMT] BYTES: RAXERXV U B
juz = IF Y= THEN LEFT MALZ? BYTE
ETE I IFr ¥=1 THEN RIGHI HALF AY¥TE
s = (X=INDEN)
U8 Zo 54
40 uo ius FMTI DFB 304,520,555
du 04 s
vl 22 due DFB 36U, 5u4,530,3
34 33 wo
8L ud Iuy OF8 $54,%33,500, %
Y ud 2
54 3l 304 DFB 390,304,520,3%
Ul 20 ud
EUCT] suy OFR Ful, 300,54, §
20 44 33
UL Hu ilu DFE 520,554,538, %
ud Ge u
&2 44 311 DFB 504,590,500, %
33 up Cs
34 v 1z OFB 531,500,508, 5
1 22 a4
31 wo 13 GFB 311,322,544, 8
CHoas Ny
wl 22 ila DFE 303, 544,389,3%
44 45 oub
BO g3 ils DFE s4d, 530,500,
a0 ul 22
44 31 ilw DFR 590,5401,322.5
Ll au ua
b 37 DFE 500,380,504,5
26 31 wi
Eo) L] OFB 526,531,567, 522XXXY0] INSTR'S
g i1y FMTI LDFB 500 ERR
21 120 OFe 521 Pl
81 21 DFE 581 1=PAGE
42 122 DFE 582 ABS
0 123 CFBE $00 IMPLIED
w 124 DEB Sul ACCUMULATOR
54 2% DFRE 559 TZPAG, X}
ac i2e DFE 540 (EPAG) . ¥
1 27 DFE 591 LTERG, X
92 EFEd oFe8 592 ABS, X
L1 129 OFRE 586 ADS, ¥
an EED) DFE 54A [ADS)
CE] 431 DFE 585 IPAG, Y
0 33z DEs 550 RELATIVE
AC AY AC
A3 Ab A4 331 CHARL RSC ", 1,008%
LA ww Ds
A4 MG DU 334 CHARZ LFB 504,500,504, 5
335 "ERL 0, TAEEN 0
ile * MNEML iS5 OF FORM:
337 (A} KEXXXUO0
33g » [B) XXXYYLOQ@
33w - 1Ch lxxxlulu
Jau = D) ARXY¥YLW
la1 = {E) KXXYYYOL
qz o (X=THDEX)
FeCur IC 8A IC
F3C3r 21 50 58 343 MNEML DoFe 51C,58A,51C,5

FuCh: 13 Al 50

159

144
345
@

346

a7
343

iy
35U

MKEMR

STEF

Al
gz

OFR

oFe
oFR

CFE
CFB
LFB
wFB
DF8
oFR

DFB
oFB

5LE,5A1,390,5
590,588,510, 5
319, 50E, 569, %

524,591,518, %
519,51 tha

SU,$1A,558, %
$24,524 (E)

SAELSAE.FAG. S
FIC.E0L]

$13,359%C, 560, 5
329,353 e

384,%313,534.,3
Ers PR {E)

$00, 362,554, %
$94,3548,554,5
68,544,586, 5
Bud, 534,574, 5

T4, 5F4, 500, 5
A4 5aR [L.3]

500, 5AR, 502, s
574,572

w

44,568,382, 5
12,500 (5]

SLA,51A,520,5
348,504 (]
FCA,5CA, 58,5
GAZ,5CHE (4]
srr.bn— §FF
INSTDS

ETHL ALJ
5
BT

INIT

XQTHIT
[PCL, X}
XIRK
LENGTH
as2u
XJdH
PELD]

HAND:
an

20PY

Wl
(PCL). Y CHARN:
HCTNE, Y

FORMAT

FORMM

FORMAT

FORMAT

FORMAT

FORMAT

FORMAT

FORMAT

FURMAT

FORMAT

4 ADR.

ABOVE

DISASSEMBLE OKE INST
AT [PCL,HY

TACK. SAVE

KEQ AREA

LE J3R.
F

USER
TH TRA
GE REL

USER OFCOLE BYIE
CLAL 1P
FROM C13,

SREAK
SSEMSLY

RTS,

Mk,
PECIAL

INST TO KEQ AREA
ILIGG 50Ps
BRANCH

CISP TO 4 FOR

DREAK

X3RE

XETS

PCINC2
PCING]

ISR

XJAap
XTHFAT

HEWPCL
ATHJAP

REGDS P

RGDSPL

AOSEL

BRANCH

JMP TO BRANCH Gi

x21 NEHAKCH FRCH XECQ

HESTCRE KESTGRE USER REG CONTENTS.

KUTHE XEC USER CP FRGH RAXM

ACC (RETURN 10 NBRARCH)

10 HARDLER

n

A

A

AREAK TEST FOR 3REAK

[IRQLCC) USER ROUTINE VECTOR IN RAM

SAVL SAVE REG'S ON BREAR
ISCLUCING pC

oL

PCH

INSDS) PRINT USER ¥#C.

HGDEE] AND HEG'S

HOK GO TO MCHITCA
LLATE RTI By EXPECTING

STATUS TATUS FRUA STACK, 'IHEM ATS

HTS 31MULATICN
PCEL EXTRACT PC F.
AND UFDATE FC ARY

PCI
LEHGTH UFBATE FC BY LEN
FCADJY

PCH

HEWPCL
FCALIZ FCOAND FUSH
STAZK FOW
J5H 3 1MULATE

a5uz

APCLY .Y
LUAL PC FOR J
(JAE] SINULATE

[PCLY . ¥
(=]
PCL
XIME
KTRH

RTNL

CROUT DLSELAY USER HEG
3RCC CONTENTS A1TH
AL LaBELs
ANCC /256

AN

45FA

a5A0

cour
ET3L-3FB, X
cour
4380
cour
ACC+S, %
PHBYTE
HRSFL
BHANCH TAKEN,

501 ADD LEN+2 TO PC
PCLI, Y

I6l

STA
1

ACK
fLES =]

56
ELY

Az
A

i
Uy

us

3

44

Fa
FA

Ly

HARNCH

IHITBL

KTuL

PREAD

PREADZ

RTSID
INIT

SETIXT

SETGR

SETWRD

MUL3

MUL4
MUL3

DIVes
pivz

BCADJD
PCL
BCINC2
SAVE NOEMAL RETURN AFTER
USER OF
PCINCI GO UFCATE FC
CUMMY FILL FOR
WRANCH EEC AREA
BRANCH
sCL
3038
09
304U
503
FLRLG THIGGER PACDLES
500 IHIT SoUNT
COMPENSATE FOR 15T COLNT

PACDLG, X COUNT Y-REG EVERY
BTS20 i U3SEC
FREADZ E AT 255 MAK
#hud SLE STAIUS FOR CEBUG

SOFTWARE

iT VIDEG MUDE
TXTSET SET FCR TEXT MODE
FULL SCREEN WINDUW

TATCLA SET FOR GRAPHICS “oLC
MIXSET LOWER 4 LINES AS
CLRTCF TEXT WINDOW
w518
ANDTOR SE1 PCR 40 COL WINDOW
=500 TGP LN A-REG,
WHDLFY BTTM AT LINE 24
526
ANDWOTH
File
WNODBTM NTAB TO RCW 23
#5017
cv VIABS TC ROW IN A-HEG
VTAR
Mol ASS VAL OF AC AUX
510 INCEXK FOR 16 BITS
ACL ACK * ALX + XIND
A TO AC, XTIHD
AuLa TF KO CARRY,

WO PARTIAL PROD.
45FE
XTNDL+2,X ACD MFLCND {AUX)
AUKLAZ, X TS PARTIAL PROC
ATHOL*Z, X IRTND) .
ULy
§501
LEXEY
LEET
MULS
MLz
Mol ABE VAL OF AC, AUX.
#5lu inpEX FOR 16 21Ts
ACL
ACH
ATHDL KTHE /ALK

162

FC
co

HE1

Ll H

Mol

MEATS
BASCALD

B5CLC2

BELLL

BELL2

AT528
STOALY

ALVANCE

RTS1
VIDIUT

XTHDH

ATHEL
AUXL

MDRTS
LOCO, X
LOCE, X
LOCL, X

LOCL, X
S1GH

WALT
SFKR

BELLZ

<H
(BASL), ¥
(=1}

cH
WD GT
<R

$5A0
STOADY

STCADY

163

ABS VAL OF AC, AUX
WITH RESULT STGH
IN L33 OF SIGN.

X 3PECIFIES AC OR AUX

TOMPL SPECIFIED MEC
IF

CALC BASE ADR T8 SASL.H
FOR GIVEN LINE KO,
U<=LINE NU.€=317

ARGTUJUABCDE, GENERATE
BASHEGUOBAULCD
AN
BASL=EABABULT

BELL cnano {CNTRL-GY

SELAY ,ul SECCHES

TOGGLE SPEAKER AT
1 &HZ FOR .1 SEC,

CURSER i [RCEX T2 V-REG
STOR CHAR iH LI
1HCREMENT CUREER
{HOVE RIGHT)
BEYOND WINLOE WIDTHP
YES CR TC NEXT LINE
N0, RETURN
CONTROL THAR?
W3, DUTPOT IT.

IHEEX

‘cuTeUT 11.

YE:
LINE P:,BD’

HAEBS aPAC;.? [CnTRL-HI
WO, CHECE FOR @ELL.

FC
FC

FC

FC

VTAR
VTAST

RTS4
ESCL

CLRECP

CLEGRL

SCALL

SCAL2

CLREOL
CLEOLT

VTABZ
[EASL), ¥

IBASZL) , ¥

164

CECREMENT CURSER M INDEX
IF P05, OK. ELSE 90VE Ug
HET CH TC WhbaDIH=1

(B IGITMOST SCREEN POS)
CUKSER ¥ 18DEX

IF TOP LINE THEN RETURN
DECH CURSER V-INDEX
GET CURSER W-INDEX
GENERATE DASE ADDE

ADD WINDOW LEFT THDCX
T BASL

ESC?
IF 50, GG HCHE AND CLEAR
ESC-A GR @ THECK
A, RDVANCE
4. BACESPACE
E3C-C Ok © THECK
UNH

CF LINE

SAVE LURRE&’" lHE l.)! STE
CALC BASE ADDRESS
CLEAR TO E0L, SET TARRY
CLEAR FROM H INDEX=0 FOR
INCREMENT CURRERT LINE
{CARRY 15 SE1)
LONE TG BOTTCM OF A INDOW?
REEP CLEAKING LIKES
. TAB TO
CURSCH WV
AKD H-INDICES

i

THEN CLEAR TG LML OF PALE

CUMSCR TO LEPT uF 14
TRET CURSOH (imu)
IHCR CURSCR ViDCw 1 LiNE)

DE X

ICHEEN?

SET BASE ALCH

BECK CURSOR V{BEACK 20 BOTTON)
ART AT TCP SCRL WHDw

GESERATE 3 J\SL ACBRESS

COPY 8
TG BAS

L H
INET ¥ TO RIGHTHOST INDDX
OF SCROLLING HINDOW
INCE LINE HUMBER
CONE
ns, FINISH

FURM BASL,H (BASE ADDR)
MOVE A CifR UP ON LINE

NEXT CHAR UF LINE

NEXT LINE
CLEAR 8
GET BASE ADBR P"\.ﬁ BOTTOM LINE
CARRY I5 5ET

CURSCR # INDEX

Wl Zs 091 CLEGL2 STA {BASL), ¥ STURE DLANZS FRUH “HERE’

Cu sk 1Ny TG ERD OF LINES (wDwlTH)
cs 2 TH CEY WNDWDTH
Pu F9 296 BCC CLEGLZ
By 037 RTS
e wad AAIT SEC
4o ¥ WAITE PUA
E% ul Fuu WAITS BRC g0l
Gu ¥C ol BHE WAITI 1.0204 USEC
LEd rs FLA (E3+2T12*A+S124A%A)
E% ul [CF] SBC #5301
£0 Fa 104 SHE WAITZ
ol i RTS
Ko 4% TUE NKTAML INC AdL INCE 2-BYTE A4
oy 2 L] BHE NATAL AND AL
Ea 43 (°1] INC A4H
A5 1 Fud mHTAL LoA AlL INCE 2-BYTE Al.
5 il0 CME AZL
A 3D 1L LCA ALH AND IOMPARE I0 A2
E5 iF 12 SBC AH
Eo il 3 INC ALL {CARRY SET IF >m)
Cu w2 iL4 BNE RTS4B
£6 b 15 Iuc Ald
b fle RT342 RIS
Au 38 P17 HEADR (A WHITE
4w b FCodle JER AALF
Bu F3 g aHE 1h50
s FE i AL
BU FS izl acs THEN A S
Au 21 122 Loy Ul USES)
<0 DB FC 723 WRBIT J5R #EITE TWO HALF CYCLES
Ca 124 INY OF 250 USEC ('u')
Cu 1245 INY IR 300 USEC {'u')
48 26 LERDLY (143
Du fo i27 AME LEROLY
S0 U5 72s O WHIAPE ¥ LS COUNT FOR
Au 32 2y LoY w542 TIHING LOOPF
48 130 ONEDLY bEY
Lu FOo EE) BNE OKECLY
AC 10 Cu 732 WHTAPE Lo¥ TAFEOUT
Al T i33 LD¥Y 352C
<A 734 DEX
() 115 RT3
A2 ud P36 HLEYTE LDx #5ud B BITS TO READ
dn T30 ROBYTZ PliR READ TWO THRANS ITIORS
2y FA FC 38 JSR RDIBIT (FIND =DCE)
Gi 139 FLA
28 i ROL A NEXT 81T
Ay dA 741 LEY w5iA COUNT FOR SAHPLES
[} 42 DEX
Ly F5E 43 8%E RODBYTZ
U 144 RTS
o FO FC 745 RDIBIT J3R HDBIT
ad 746 ROBIT CEY CECR ¥ UNTIL
AL 6U Su 749 LDA TAFEIH TAPL TRANSITION
45 2F aE ECR - LASTIN
lu s T4 BFL ACBIT
45 IF 7540 ECR LASTIN
ES 2F 51 STA LASTIN
Ty du 52 CPY 438y SET CARRY TN Y-REG.
BU %3 RTS
A4 24 154 ROKEY LOY CH
BL 2e 153 LDA (BASL).Y HET SCREEM TO FLASH
48 isn P
iy i 157 AND 35.F
Ui du 50 agh o esad
1 s 5% STA (BASL),Y
o iou HLA
sl J8 ud del JUE (KSHLY GO T USER KEY-IN
Ei 3E iBE REYIN NG RbEL
Lu b ied ANE REYLINI INCH RND NUMBER
Eo 4F o4 ENC RNDH
2C ww Tu FB3 REYINZ BIT K8L KEY DUwh?

165

FC

ESC

ROCHAR

ROTCR

NOTERY
CANCEL
SETLNZ
GETLN

BOESPT

HXTCHAR

CAPTST

ADBINF

CROUT
PRAL

FRYND

XAKG

AL UCHE

EEM
DRTAGUT

LCGe
KEPLACE FLASHING 3CKERN
GET KE¥CUDE
CLE KEY 3TRUGE
GET KEYCODE

IANELE ESC FURC.
IAD KEY

EsC?
YES, DON'T RETURE

ECHD USER LI~E
HIN [RVERZE

CHECK FUR ECIT KEYS
85, CTAL-X
MARGINZ

¥ES, SOUND 2ELL
ADVANCE INPUT THDEX

BACKSLASH AFTER CANCELLED
GUTPUT CR
CUTPUT FRCHPT ChAK

INIT [HPUT INDEX
WILL BACKSPACE TO u

USE
FO

CREER CHAR
CTRL-Y

CONVERT TC CAPS

ADD TS INFUT BUF

CLR TG EQL IF CR

PRINT CR.AL TH HEX

PRINT *-*

SUTPUT BLANK

OUTPUT BYTE I[N HEX

LIy

dlu BCC MODSCHK CHECK IF TINL TG,
d39 RIS4C ATS PRINT SDOR
440 XAMFH L5 A DETERMINE IF MOH
gal BCC xaM MOCE 15 XA¥
HAZ L3R A ADD, OR SUB
CLE] Lse A
a44 Loa AL
@45 BCC aDD
ddi EOR #5FF SUB: FORM 2°5 CCMPLEMENT
HAT ADD ADC ALL
e A
ad9 LDA 458D
FO 450 JSR couT PRINT *=', THER RESULT
B3l PLA
452 PRBYTE PHA PRINT UYTE A5 2 ®
a5 L3R A LIGITS, DESTRUYS A-REG
BE4 LER A
B35 LER A
ESE L5R A
FD 857 158 PRHEXI
454 PLA
B34 PRHEX AND pSJF 4T HEX DIG IN A=-KEG
Y6y PRHEXZ CRA 3500 'S
Hal CHE #3580
Hal BCC CouT
LLE] ABC #5086
d4d HB4 CCUT JME [USHL) VECTCR TC USLR CUTPUT RCGUTINE
de% COUTL CMP g5aL
ELTY acc couTz CGN'T OUTPLT CT&L'S INVERSE
487 AND INVEFLG AASK WITH INVERSE FLAGC
SE§ COUTZ 5TY ¥savl SAV Y-REG
sul P SAV A-REG
FB adu JEd WI1DaUT CUTPUT A-REG A5 ASIII
67l PLA RESTCRE A-REG
Bi2 LDY ¥SAVL
573 kTS
Bi4 BLL DEC ¥S5AV
wis BEQ XAMY
B76 BLANK DEX ALALE TO ok
817 AKE SEIMDZ AFPTER 3JLAKE
78 e CATA STORE nOCE?
679 BRE NO, XAM, ADD CR 5
GéU STOR STA KEEP [N 3TCHE MCLE
del LDa
L) iTA STCRE AS LOW BYTE AS (A3)
dal isc
sbg anE IXCR A, RETURK
ues INC
386 RTSS ATs
Ud7 SETMODE LDY ¥iAW SAVE CONVERTEL *:', *+
wl b LDA IN-1,¥ =y '.' AS MQDE.
Bas SETMLT STA MODE
890 RTS
831 LT LoX wsul
892 LT2 LDA A2L,X COPY A2 (2 BYTES) 10
w93 STA AdL,X Ad RND AS
a94 STA ASL.X
a5 DEX
aln BPL LT2
B3y RTS
B398 MOVE LOA (ALLY,Y MOVE (AL TO AZ) TO
(L] STA (A4LI.¥ indy
FC 300 JSR O NXTA4
401 BCC mOVE
duz HTS
903 WFY LbA [AlL),¥Y VERIFY (Al TO AZ) WITH
T} CHP [A4L), ¥ A4}
40§ BEC WFYOK
FL %00 JSR PRAL
a07 LDA {AlL),¥
FO4u8 JSR PRBYTE
Wiy LBA #5AU
FC 9lu J5R Cour

167

VE¥IK

LIST

List2

ALPC

ALFCLE

1PCATS
.,31 pEL

SETRIRN
SETIFLG

SETERD
IHPORT
INPRT

SETVID
UUTPOHT
OUTPRT

IOPRT

LOFRTL
1UPKETZ

NBASIC
BASCONT
GO

REGTZ
TRACE
STEFZ

USH
WRITE

il

tAdL Y
FHBYTE
$5A9

Ut
NATA4
VEY

ALRC
¥3l4

FOALD
FCL
FCH

asil

LISTZ

AIPCATS

ALPCLP
#3IF
SETIFLG
#5FF
[HVFLG
¥5J0

AZL
PREWL

#5UF
10FRTL
#10ADE/ 156
250
1OPRTZ
#CCUTL /256
LCCu, &
LOCL. X

(AL, %)

IALL, %)

168

MOVE A1 (2 3T
PC LF SPEC
LizEEnBlE &y

ACJULT FC

SXT GF Zu INSTRE

SET FGR INVERSE V1D
VEA €3
SET FOR HOAMAL YID

SIMULATE
SPECIF

ORT 40 TNPUT
S0 (KEYIN AGUT

SIHULATE POAT #0 QUTEUT
SPECIFIED (COUTI RUUTINE)

SET RAM IN/OUT VECIORS

TO BASIT WITH SCRATCH
CONTINLE BASIC

ADR TQ FC IF SPEC'D
RESTORE META KEGS

GO TO USER SUBR

TO HEG CISPLAY

AR TO PC
TAKE ONE £1
TG USH FUBA AT USAADR

FoSpEC'D

ARITE lo-3EC HEADER

WRBYTE
WRBYTZ

CRMON

READ
RDZ

RO

s
PHEHE
i

BELL

RESTORE

RESTR)
u

SAVE
SAV1

7}
i RESET
a

MONT

2
KXTITH
4

STATUS

ACC
XEEG
TREG

ACT
KEEG
YREG

SENT

SETHORM
INIT
SETVID
SE1R8D

BELL

169

HAKDLE CR AE BLANK
THEN BOF STACK
AND BRI TU HGHN

FiND TAPEIN EDGE

CELAY 1.5 SECCNCS
INIT CHXSUM=SFF
FIND TAFEIN EDCE
LOUK FOR SYNC BIT
{SHORT o)
LOCF UNTIL FOLHG
S&IF SECCHND S¥YNC H-CYCLE
INDEX FOR J/1 TEST
READ A BYTE
STORE AT (AL}

UPDATE HUNKING CHESUM
INCR Al, COMPARE TC A2
COMFENSATE L/) INCEX
LOCP UNTIL DOKE

AEAD CHESUA BYTE

GOCD, SCUND BELL AND RETURN

FRIAT “ERR"., THEW BELL

DUTPUT BELL AND RETURN

BESTURE 6302 REC CCWTENTS
USED DY LEUUG SCFIWARE

SAVE 5542 REG CORTENIS

SET SCREEN MCDE
AKD INIT KEU/.C']CE?J
A5 1/0 DEV

AUST SET HEX MCDE!

‘' PHOMET FOR MCH

HEAD A LINE

CLEAR MOo MODE, SCAN IDX

GET ITEM, NOM-HEX
CHAR IN A-REG

31

s

FF

CI| RSHCH

HxmeIT

HXTBAS

HEIBS2

u\
GETHLM

HATCHR

TOSUE

FELT

U
CTHETSL
2

SUBTBL

517

o
CHRTBL, Y
CHRSECH

A
A2l
Az

NETBIT
MCLE
HETBSZ
ALH, X
ALl X
AdM,X

HXTBAS
HKTCHR

0IG
FG0/156

SUBTDL, ¥

9
$BASCORT-L
FUSH-

JREGZ -1

170

X-REG=U LF B2 HEX inPUT

HOT FOUND, GO HOI
FIND CMND CHAR IN ‘“:I.

FOUKC, CALL CCRRLEPONDING
SUBROLT INE

GOT HEX DIG
SHIPT !.‘I‘IL‘ A2

LEAVE X=3FF IF ol0

IF MODE 13 TLRC
TR COPY A2 10
Al AND A}

CLERR A2

3ET CliAl

LF HEN DIG. TH

ICH-ORCER
CH G J1E

PLI:SH LC« JRLEE

I J& STR

CLR MOCE, l!I.D HOLE
TC A-HE

G T ;DBF VIA RTE
F{"CTRL-C*)
FU"CTRL-¥")
F{"CTRL=E"}

E(Iy

F{"¥™)

F("CTRL=E"}

178"y

FI"CTRL-P"}

FI CTRL=8")

Fi

[F=EX=0R BO+5H3)

DFE QUIPRT-1
DFE aNAASIC-1
DFB 4SETHICE-1
DEE ySETMODE=1
DFE FMOVE-L
LEE sLT-1

DFE SETHORM=1
DFE aSETINV-1
DFE LIST-1
DFE #WRITE-1
DFE #GU-1

DFE gREAL-1
PR 3SETWODE=1
DFB #3ETMOGE-1
DFE aCHMON-1

CFB aanl SMI VECIOR
GFH aNHL/258
DFR IRESET RESET VECTUR
DFB BRESET/256
OFE 4IRD 1RG VECTCR
FFFE: FA L152 CFR BIHQ/ 238
1155 kgTH EGU ST

1m

SYMBOL TABLE

(NUMERICAL ORDER)

0000 LOCO FC7& SCRL1
0022 WNDTOP FLC9E CLEDLZ
0026 GBASL FCAf WAIT3
0024 BASZL FLC? HEADR
002D V2 FCES WRTAFPE
002E FORMAT FCFD RDBIT
Q030 COLOR FUO2F ESC
0034 YSAV FD&2 CANCEL
0038 KEWL Q001 LOC1
003C AlLL 0023 WNDBTM
Q040 A3L 0027 GBASH
0044 ASL 0020 BAS2H
0047 YREG 0020 RMNEM
O04F RMDH 002F LASTIN
03F2 SOFTEV 0031 MODE
O3FE MNMI 0035 YSAVL
CO00 I0ADR 0039 KSWH
CO30 SPKR 0030 AlH
CO53 MIXSET 0041 A3H
€057 HIRES 0043 ASH
CO58 CLRAN1 0048 STATUS
CUOSF CLRANZ QO9% PICK
CFFF CLRROM O3F4 PWREDUP
FBOC RTMASK Q3FE IRGLOC
FB26 VLINEZ CO00 KED
FB3& CLRTOP CO50 TXTCLR
FBS5& GHRCALC CO54 LOWSCR
FB7F RTMSKZ CO58 SETANOD
FBAS ERR CO5C SETANZ
FHCT MNNDX3 CO&0 TAPEIM
FBFS NXTCOL EOQOOD BASIC
F926 PRADR3 FBOE PLOT1
F?40 PRNTYX FB28 VLINE
F94A PRELZ2 FB38 CLRSC2
F9%&6 PCADJ3 FB&4 SETCOL
Faas FMT2 FB82 INSDS1
FAOQD MNEMR Fa8a? GETFMT
FA&2 RESET FBD0 IMSTDSP
FAAT NOFIX FEBFF PRHMNZ
FABA SLOOP F92A PRADRA&
FAE4 RDSP1 F741 PRNTAX
FB11 XLTBL FF4C PRBL3
FB2E RTS2D F¥5C PCADJA
FE4B SETWND F7B4 CHAR1
FB&F SETPWRC Fad40 IRG
FB97 ESCOLD FasF INITAM
FBDO BASCLC2 FaAab PWRUP
FBFO STORADY FACT NXTBYT
FC10 BS FAFD PWRCON
FC2B RTS4 FB19 RTBL
FC58 HOME FB2F INIT

172

FESHE
FB?8
FE?D
FBD9
FBF4
FC1A
Foac
Fo&2
Fcac
FCaD
FCB4
FCDé&
FCEC
FDOC
FD3s
FD&7
Qo200
ooza
o028
oo2c
002E
002F
0032
0036
0034
0a3E
o042
0045
0045
0200
03F5
0400
co10
cos1
C055
cos9
cosD
CO&4
E003
FE19
Fa31
Fa3c
Fa71
FBac
FBBE
FBD4
F910
F930
F744
F953
F9&1

TABY
VIDWAIT
ESCNOW
BELL1
ADVANCE
uP
ESC1
CR
SCRL2
CLEOL2
MXTAS
WRBIT
RODBYTE
RDKEY
RODCHAR
GETLNZ
WNDLF T
CH
BASL
H2
MASK
LENGTH
1IMNVFLE
CSWL
PCL
AL
AdL

ACE
SPNT
N
AMPERY
LINE1L
KBDSTRB
TXTSET
HISCR
CLRAND
CLRANZ
PADDLO
BASIC2
HLINE
RTS1
CLRSC3
SCRN
INSDS2
MNNDX 1
PRNTOP
PRADR1
PRADRS
PRNTX
PCADJ
RTS2

CHARZ
BREAK
NEWMOMN
SETPG3
REGDSP
DISKID
PHREAD
SETTXT
APPLEII
KBOWALT
ESCNEW
BELLZ

> RTS3
22 VTap

CLREDOP
LF
SCRL3
WALT
NXTAL
ZERDLY
RODBYTZ2
KEYIN
NDTCR
GETLN
WHDWDTH
(49
BASH
LMNEM
CHRSUM
SIGN
PROMPT
CEWH
PCH
AZH
AdH
XREG
RNDL
BRKW
USRATR
MELOT
TAPEOUT
MIXCLR
LORES
SETAMI
SETAND
PTRIG
PLOT
HLINE]
CLRSCR
GRASCALC
SCRNZ
TEVEN
MMND X2
PRMTBL

F214
F?38
F?48
F?54
FR&2
FeC0
Fas5%
FASE
Faab
Faba
FRO%
FRa2s
Foao
FE&S
FR%4
FBC1

FBEF
FBFD
FCca2a
FCa&
FC70
FCoc
FoAZ
Foea
FCE2
FCF&
FD21

FD5SF
FD71

FD73
FD®2
FDB3
FDD1

FODED
FED4
FELID
FE3&
FE75
FEB4
FEBD
FE?B
FEB3
FEC4
FEED
FFOa
FF3F
FF5%
FF74A
FFA2
FFC7
FD7E
FD?&
FDB&
FDDA

PRADRZ
RELADR
PRBLNK
PCADJZ
FMT1
MNEML
OLDERK
FIXSEV
SETPLP
RGDSP1
TITLE
PREADZ
SETGR
STITLE
NOWALT
BASCALC
RTS2E
VIDOUT
VTABZ
CLEDP1
SCROLL
CLREOL
WAITZ2
RTS4B
ONEDLY
RD2BIT
KEY IN2
NOTCR1
BCKSFC
NKTCHAR
PRAL
xAM

ADD
couT
OLANK
SETMDI
VFY
ALPC
SETMORM
INPRT
10PRT
BASCONT
STEPZ
WRBYTE
RD2
RESTORE
OLDRST
CHRSRCH
NXTDS2
IMODE
CAPTST
PRYX2
DATAOUT
PREYTE

173

FDFO
FEOB
FE20
FESB
FE78
FEB&
FE93
FEA7
FEB&
FECA
FEEF
FF16
FFa4
FF&as
FFaA
FFa7
FFCC
FOB4
FDAZ
FDCS
FDE3
FDF&
FE17
FE22
FESE
FE7F
FEB9
FE?S
FEAS
FEBF
FECD
FEFé&
FF2D
FFaA
FF&ag
FFe0
FFaD
FFE3
FDBE
FoaD
FDC&
FDES
FEQD
FE18
FE2C
FE&3
FEBO
FEBEB
FES7
FEBO
FEC2
FED4
FEFD
FF3A

COUT1
STOR
LT
VFYOK
ALPCLP
SETIFLG
SETVID
IOPRT1
&0

USR
WRBYT2
RD3
RESTR1
MoN
DIG
GETNUM
CHRTBL
ADDINP
XAME
RTS4C
PRHEX
couTz
RTSS
LT2
LIST
ALPCRTS
SETKED
OUTPORT
IOPRT2
REGZ
WRITE
CRMON
PRERR
BAVE
MONZ
MXTBIT
MNXTCHR
SUBTEL
CROUT
MODBCHK
XAMPH
PRHEXZ
BL1
SETMODE
MOVE
LIST2
SETINY
INFORT
OQUTPRT
XBASIC
TRACE
WR1
READ
BELL

FF4C
FF73
FFo8
FFEBE

SAV1
NXTITH
NXTBAE
TosuD

SYMBOL TABLE
(ALPHABETICAL ORDER)

003D
FEZF
0040
0044
FHF4
Qo2a
o9
FO71

FEQO
FC10
FFBA
o024
cos9
FCFC
FB3C

FDED
FCa2
0025
FEAS
FB97
Foaé
o02s
FD&A
FCCo
FB19
o200
Fea2
Co00
03FE
cooo
0038
0400
0000
FE=22
€053
FBC2
FFa%
FAB1
FDSF
FF98
FD75
FAST
FE97

AlH
ALPCRTS
AL
ASL
ADVANCE
BASEL
BAGH
BCKEPC
BL1

BS
CHARZ
CH
CLRANG
CLREOL
CLRSC3
cout
CR

cv

ERR
ESCOLD
FMT2
GBASL
GETLN
HEADR
HLIME
IN
INEDS1
10ADR
IRGLOC
KBD
KWL
LINEL
Loco
LT2
MIXSET
MNND X2
MONZ
HEWMON
NOTCR1
NXTBAS
MXTCHAR
OLDBRK
OUTPRT

F5a
0075
F710
F230
FDDA
FDEZ
FEDB

0033
03F4
FF1é
FD35
FaD7
FF3F
004F
FB7F
F?&1

Q03c
O03F

0043
0045
QIFS
FBC1
EQOO
FBD?
FEOQ4
FD&2
002E
FCAQ
COSB
FC42
Fa3z
FDFO
FEF&
FDB&
Fcac
FD2F
CO2E
Fasa
FFAT
Cos7
FCsa
FOZF
FBac

PCADJZ
PICK
FRADR 1
FRADRS
FREYTE
PRHEX
PRNTHL
PROMPT
PWREDUP
RD3
RDCHAR
REGDSP
RESTORE
RNDH
RTMSKZ
RTS2
alL
AZH
AdH
ACT
AMPERY
BASCALLC
BASIC
BELL1
BLANK
CANCEL
CHKSUM
CLEOLZ
CLRAN1
CLREOP
CLRSCR
CouT1
CRMON
DATADUT
ESC1
ESC
FORMAT
GBCALC
GETNUM
HIRES
HOME
INIT
INSDER

174

FEAT
Fad0
FD1B
002F
FESE
0001

FE20
F7CO
Face
FF&5
03FE
FE74
FF%0
FFAD

FF5%

co&4

F95C

FBOE

F914

Fan

FBLE

FDES
FED4
FD%&
FasL
FCFD
FDOC

FEEBF
FFa4
O04E
Fa31

FBFC

FE78
003E
o004z
FDa4
FB&O
FEDO
E003
FHE4
FA4C
FD7E
FF7A

IOFRT1
IRG
KEYIN
LASTIN
LIST
Loc1
LY
MMEML
MIND X3
MON
MMI
NOWATT
NXTIT
NXTCHR
OLDRST
PADDLO
PCADJ4
PLOT1
PRADRZ
PROL2
PREAD
PRHEXI
PRNTCP
PRYX2
PHRUP
RDBIT
RDKEY
REGI
RESTR1
RMDL
RTS1
RTS3
ALPCLP
AZL
AdL
ADDINE
APPLEILI
BASCLC2
BASIC2
BELL2
BREAK
CAPTST
CHRSRCH

FCRE
COo5D
CFFF
FB3&
FDF &
o037
FFBA
FBAS
FATDE
FBa7
FBAT
FEB&
CO55
FE9E
FEBE
FBDO
FEAT
co10
FD21
002F
FE&3
CO5&
D0Z2E
Fao0
FDAD
FEZ2C
FAAZ
FCBA
FFAZ
FBF5
FCEZ2
F354
0038
FBOO
FPR&
FR4C
FB25
FaFe
Foa4
Co70
FCFA
FCEE
FAE4
F338
FaDa
FB19
FBEF
FcCca
FE75
o041
o0as
FDD1
0028
FEB3
coze

CLEOLZ
CLRANZ
CLRROM
CLRTOP
coutz
CSMH
DIG
ESCMEMW
FIXSEV
GBASCALC
GETFMT
=]
HISCR
IEVEN
INPORT
INSTDSP
I0OPRT2
KBDSTRE
KEYINZ
LENGTH
LIsT2
LORES
MASK
MNEMR
MODBCHK
MOVE
MNOFIX
MNXTAL
NXTES2
NXTCOL
ONEDL Y
PCADJZ2
PCH
PLOT
PRADRZ
PREL3
PREADZ
PRMMN
PRMTX
PTRIG
RD2ZBIT
RDBYT2
RDSP1
RELADR
RGDSFP1
RTEL
RTS2E
RTS4B
ALPC
ATH
ASH
ADD
BASZH
BASCOMT
BASL

Fr3a
O3F0
FSE4
FFCC
FCAL
COIF
FE38
0030
FDEE
0038
FoO2
FB7D
Fe&2
o027
FD&7
o02C
FB1C
FasF
FEED
o032
FEB
FBB8
0037
FC&&
o02C
COo54
co52
FEBE
0031
07FB
FD3D
FCE4
FACT
FF73
FE?S
Fe53
O03A
Foe2
F52A
Fe48
FFaD
F941
Fea0
FaAFD
FFOA
FCEC
FEFD
FaL2
002D
FBOC
F3ZE
FDC35
FE17
FCRB
FC7&
Fa7?

BELL
BRKV
CHAR 1
CHRTBL
CLEOP 1
CLRANS
CLRSC2
COLOR
CROUT
CEML
DISKID
ESCNOW
FMT1
GBASH
GETLNZ
H2
HLINE1
INITAN
INPRT
INVFLG
10PRT
KBDWALT
KSWH
LF
LMNEM
LOWSCR
MIXCLR
MNNDX 1
MODE
MSLOT
NOTCR
METAS
NXTBYT
MXTITH
OUTPORT
PCAD.
PCL
PRAL
PRADRA
PREBL.NK
PRERR
PRMTAX
PRNTYX
PHRCON
RD2
RDBYTE
READ
RESET
RMNEM
RTHMASK
RTSZD
RTS4C
RTSS
RTS4
SCRLL
SCRNZ2

175

Co51

SETANZ
SETIFLG
SETMODE
SETPWRC
SIGN
SPNT
STOR
TAPETIN
TRACE
USR
VFYOK
VL INE
WaALT
WNDTOP
WREBYTZ
LAMBE
XLTBL
YSAW
SCRLZ
SCROLL
SETANI
SETINV
SETNDRM
SETTXT
SLOOP
STATUS
STORADV
TAPEOUT
TATCLR
USRADR
vIDOUT
VTARZ
WAITZ
WHDWDTH
WREYTE
XAMPM

Q02D V2

FE7E8
Fcaz
0023
FED4

FECD WRITE
FDRZ XAn
0047 YREG
FFC7 IMODE
FFaa SAVE
FB71 SCRM
COSA SETANI
FR40 SETGR
FEID SETMDZ
FaAAT SETPLP
FE4B SETWHND
CO30 SPKR
FB&S STITLE
FHSE TABY
FFBE TOSUB
FC1A UP
FE3& VFY
FE26 VLINEZ
FCAT WAITZ2
0020 WNDLFT
FCD& WREBIT
FCES WRTAPE
FEBO XBASIC
QU35 YSAVL

SYMBOL TABLE SIZE
2985 BYTES USED
2531 BYTES REMAINING

SLIST 44

GLOSSARY

6582: The manufacturer’s name for the microprocessor at the heart of your Apple.

Address: As a noun: the particular number associated with each memory location. On the
Apple, an address is a number between ® and 65535 (or S8808 and SFFFF hexadecimal). As a
werb: Lo refer 1o a particular memory location,

Address Bus: The set of wires, or the signal on those wires, which carry the binary-encoded
address ftom the microprocessor to the rest of the computer.

Addressing mode: The Apple’s 6582 microprocessor has thirteen distinet ways of
maost locations in memory. These thineen methods of forming add are catled add i
modes.

Analog: Analog measurements, as opposed 1o digital FTLTUNT v wiri-
able physical quantity (such s lenglh, voltage, or resistance) 1o represent values. Digital meas-
urements use precise. limited guantities {such as presence or absence of vollages or magne
fields) 1o represent values.

AND: A binary [unction which is **on® if and only il all of its inputs are “on’™".

Apple: 1. The round fleshy fruit of a Rosaceous tree (Pyrus Malus). 2. A brand of personal
computer. 30 Apple Computer, Inc., manufacturer of home and personal computers,

ASCIL: An acronym for the American Standard Code for Information Interchange (often called
“USASCI'™ or misinterpreted as “ASC-11""). This standard code assigns a unique value from @
10 127 1o each of 128 numbers, letters, special o and control ch

Assembler: 1) One who assembes electronic or mechanical equipment. 2) A program which
vonverls the maenomcs and svembols of assembly language into the opeodes and operands of
machine language.

Assembly 1 Al ge similar in structure 1o machine language, but made up of
mnemonics and syerbols, Programs writien in assembly language are slightly less difficult to write
and und; 1 than in machine

BASIC: Acronym for “Beginner's All-Purpose Symbolic Instruction Code™. BASIC is a figher-
Lewel langnage, similar in structure to FORTRAN but somewhat easier 1o learn. 11 was invented
by Kemney and Kuriz al Dartmouth College in 1963 and has proved 1o be the most popular
language Tor persomal computers.

Binary: A number system with two digi " and 17, with each digit in a binary number
representing a power of two. Most digital computers are binary, deep down inside. A binary sig-
nal is easily expressed by the presence or absence of something, such as an electrical potential or
a magnetic field.

Binary Function: An B fi d by an ek ic circuit which has one or more inputs
and only one output. All inputs and outputs are binary signals. See AND OR, and Exclusive-OR.

Bit: A Binary digll. The
bit specifies a single value:
Nubbie).

allest amount of information which a computer can hold, A single
" or 1", Bits can be grouped to form larger values (see By and

Board: See Printed Circiit Board,

178

Bootstrap (“boot™): To get a sysiem running from a cold-stare. The name comes from the
maching’s attempts to *pull itsef off the ground by tugging on its own bootstraps.™

Buffer: A device or area of memory which is used 1o bold something temporarily, The *picture
bufler™ containg graphic information to be displayed on the video screen; the “input buffer”
holds a partially formed input line,

Bug: An error. A bardwere b is oo physical or electrical malfunction or design error. A soffware
bug is an error in programming, either in the logic of the program or typographical in nature. See
“feature’”.

Bus: A sl of wires or traces in a computer which carry a related set of data from one place o
another, or the data which is on such a bus.

Hyte: A busic unit of measure ol a computer’s memory. A byle usualy comprises eight hirs
Thus, it can have a value from @ 1o 255, Each character in the ASCH can be represented in one
byte. The Apple’s memory locations are all one byte, and the Apple’s addresses of these loca-
tiens consist of two bytes.

Call: As a verb: lo leave the program or subroutine which is currently cxecuting and to begin
another, wsualy with the intent 1o return to the original program or subroutine. As a noun: an
instruction which calls 4 subroutine,

Character: Any graphy symbol which has a specific meaning to people. Letters {both upper- and
lower-case), numbers, and various symbols (such as punctuation marks) are all characters,

Chip: See fnegrated Circanit

Code: A method of representing something in terms of something else. The ASCID code
represents characters as binary numbers, the BASIC language represents algorithms in terms of
program statements. Code is also used 1o reler o programs, usually in low-level lamgiages

Cold-start: To begin 1o operate a computer which has just been turned on.

Color burst: A signal which color television sets recognize and convert to the colored dols you
see on a color TV screen. Without the color burst signal, all pictures would be black-and-white.

Compater: Any device which can recicve and store a set of insiructions, and then act upon those
instructions in a predetermined and predictable fashion. The definition implies that baoth the
instruction and the das upon which the instructions act can be changed. A device whose instruc-
tions cannot be changed is nod a computer.

Control (CTRL) ch 1 Ch: in the ASCI ch set which usually have no graphic
representation, but are used to control various functions. For example, the RETURN control
character is a signal to the Apple that you have finished typing an impur fine and you wish the
COMPULEE 10 act upon i,

CRT: Acronym for *“Cathode-Ray Tube™, meaning any television screen, or a device containing
such a screen.

Cursor: A special symbol which reminds you of a certain position on something. The cursor on
a slide rule lets you line up numbers; the cursor on the Apple’s screen reminds you of where you
are when you are typing.

Data (datum): Information of any type.

Debug: To find begs and eliminate them.

DIP: Acronym for **Dual In-line Package', the most iner for an | 1 Cir-
cuit. DIPs have two parallel rows of pins, spaced on one-tenth of an inch centers. DIPs usually
come in 14-, 16-, 18-, 20-, 24-, and 40-pin configurations

Disassembler: A program which converts the opcedes of machine lunguage 10 the maemonics of
assenibly language. The opposite of an assembler,

cen. AsS a

Display: As 4 noun: any sort of output device for a computer, usually a widee sc
noun: o place information on such a screen.

Edge connector
exchange clec

A sockel which mates with the edge of a primed circnir board in order 10
signals,

The location used by a machine-language subroutine which contains the first exe-
ruction in that ine; ¢ y, often the beginning of 1he ine.

Excusive-OR: A binary function whose value is ol only if all of its inpuis are “ofl™", or all of
its inputs are “on’",

Execute: To perform the intention of a command or instruction. Also, 1o run a program or a
portion of & program.

Feature: A fug as de

bed by the marketing depariment,

Format: As a noun: the physical form in which something appears. As a verb: 1o specify such a
form.

Graphic: Visible as a distinet, recognizable shape or color.

Graphics: A system 1o display graphic items or a collection of such items,

Hardware: The physical parts of a computer,

Hexadecimal: A number system which uses the ten digits ® through 9 and the six letlers A
through F 1o represent valucs in base 16. Each hexadecimal digit in a hexad | number

represents i power of 16. In this manual, all hexadecimal numbers are preceded by a dollar

High-level Language: A fanguage which is more intelligible (o humans than it is to machines

High-order: The most important, or item with the highest vaue, of a set of similar items. The
high-order bit of a byte is that which has the highest place value.

High part: The high-order byte of a two-byle address. In decimal, the high part of an address is
the guotient of the address divided by 256, In the 6502, as in many other microprocessors, the
high part of an address comes last when that address is stored in memory.

Hz (Hertz): Cycles per second. A bicycle wheel which makes two revolutions in one second is
running at 2Hz. The Apple’s microprocessor runs at 1,023,000z,

180

170: See foputiOuipur.
10 See fegrated Circtai

Input: As a noun: data which flows from the outside world into the computer. As a verb: Lo
obluin data Irom the outside world

Input/Output (1/0): The software or hardware which exchunges data with the outside word,
Instruction: The smallest portion of a program thal a computer can cxecute. In 6582 machine

language, an instruciion comprises one, two, or three byles: in a higher-level language, instruc-
tions may he many characters long.

Integrated circuit: A small {less than the size of a fingernail about as thin) wafer of a glassy
terial (usually silicon) imto which has been etched an electronic circuit, A single 1C can con-
n from ten 10 ten thousand discrete electronic components. 1S are usually housed in DIPs
(see aboved, and the term IC is sometimes used Lo refer to both the circuit and its packuge.

Interface: An exchange of information between one thing and anoiner, or the mechanisms
which make such an exchange possible.

Interpreter: A program, usualy written in machine | . which and a
higher-level language.

Interrupt: A physical eftect which causes the computer (o jump 1o a special interrupt-handling
subroutine. When the interrupt has been taken care of, the compuler resumes exccution of the
interrupted program with no noticeable change. Interrupts are used Lo signal the computer that a
particular device wants attention.

K: Stands for the greek prefis CKilo™, i hy d. In -Feated
usage, K" usually represents the quantity 2"' or IBM {hexadecimal S48}

Kilobyte: 1,024 byies

Language: A wmpuler languuge is a code which (hopefully!) both a programmer and his com-
puter und The what he wanis to do in this code, and the com-
puter understands the code and performs the desired actions,

Lime: On a video screen, a “hne™ is a horizontal sequence of graphic symbols extending from
one edge of the screen (o the other. To the Apple, an inpur Jine is o sequence of up 1o 254 char-
acters, lerminated by the controd character RETURN. In most places which do not have personal
computers, a line is something you wait in 10 use the computer.

Low-level Language: A leeguage which is more intelligible 1o machines than it is to humans.

Low-order: The least important, or item with the least vaue, of a set of items. The low-order bil
in 4 byle is the hit with the least place vaue.

Low part: The fow-order byte of a two-byle address. In decimal, the low part of an address is the
remainder of the address divided by 256, also called the “'address moduwio 2567 In the 6582, as
in many other microprocessors, the low part of an address comes first when thal address is stored
in memary

Machine language: The lowest level | which @ P Machine

181

languages are usually binary in nuture. Instructions in machine language are single-byvie oprodes
sometimes followed by various operamds.

Memory address: A memory address is o lwo-byte value which selects a single memory location
oul of the memory map. Memory addresses in the Apple are stored with their low-order bytes
first. followed by their high-order byies,

Memory location: The smallest subdivision of the memory map 1o which the computer can
refer. Each memory location has associated with it a unigue address and a certain vafwe, Memory
locations on the Apple comprise one byte each,

Memory Map: This term is used to refer 10 the set of all memory locations which the micropro-
cesor can address directly, 1t is also used 1o describe a graphic represeniation of a system’s
memory.

Microcomputer: A term used 10 described a computer which is based upon a microprocessor,

Micraprocessor: An integrated arcuit which and machine | pro-
Brams,

Muemonic: An acronym (or any other symbol} used in the place of something more difficut o
remember. In Assembly Language, each machine language opeode is given a three letter
mnemonic (for example, the opeode 368 is given the mnemonic RTS, meaning **ReTurn from
Subroutine'"). :

Mode: A condition or set of conditions under which s certain set of rules apply.

Modulo: An arithmetic function with two operands. Moduio takes the first operand, divides it by
the second, and returns the remainder of the division.

Monitor: 1} A closed-circuit television receiver. 20 A program which allows you 1o use your
computer a1 a very low level, often with the values and addresses of individual memory locations.

Multiplexer: An electronic circuit which has many data inpuis, a few selector inputs, and one
output. A multiplexer connects one of its many data inputs 1o s outpul. The data nput 1
chooses to connest to the outpul is determined by the selector inputs.

Mux: See Mulipleser.

Nybble: Colloguial werm for half of a byte, or four bits.

Opeode: A muchine language instruction, numerical (often binary) in nature,

OR: A binary function whose value is “on’ il a1 least one of its inputs are “on”™,

Output: As a noun, data d by the whose ion is the real world. As a
verb, the process of generating of transmitting such data.

Page: 1} A screenfull of information on a video display. 2} A quantity of memory locations,
addressible with one byte, On the Apple. a “page’’ of memaory contains 256 locations

Pascal: A noted French scientist.

PC board: See Printed Circust Board

182

Peripheral: Something attached 1o the computer which is not part of the computer itsell. Most
peripherals are input and/or output devices.

Personal Computer: A compuler with menmary, and perif which are well-suited
for use in a home, office, or school.

Pinout: A description of the function of cach pin on an IC, often presented in the form of a
dliugram

Potentiometer: An electronic component whose resistance to the flow of clecirons is propors
tional 1o the setting of a dial or knob, Also known as a *“pot”” or “variable resistor™.

Printed Circuit Board: A sheet of fiberglass or epoxy onto which a thin layer of metal has been
applicd, then etched away to form fraces. Electronic components can then be attatched 1o the
board with molten solder, and they can exchange electronic signals vin the etched traces on the
board. Small printed circuit boards are ofien called “cards™, especially if they are meant 1o con-
nect with edge conmectors,

Program: A sequence of instructions which describes a process.

PROM: Acronym for * Programmable Read-Only Memory’. A PROM is a ROM whose contents
can be altered by electrical means. Information in PROMs does not disappear when the power is
turned off. Some PROMS can be erased by light and bhe d

RAM: See Rum.rr.ml-)(crﬂs Memory.

Random-Access Memory (RAM): This is the main memory of a computer. The acronym RAM
can be used to refer either 1o the integrated circuits which make up this type of memory or the
memory itself. The computer can store values in distinet locations in RAM and recall them
again, o aller and re-store them if it wishes. On the Apple, as with most small computers, the
vitlues which are in RAM memory are lost when the power 1o the computer is turned off.

Read-Only Memory (ROM): This type of memory is usually used to hold important programs
or data which must be available 1o the computer when the power is first turned on. Information
in ROMSs is placed there in the process of manufacturing the ROMs and is unalterable. Informa-
tion stored in ROMs does not disappear when the power is turned off.

Reference: 1) A source of information, such as this manual. 2) As a verb, the action of cxamin-
ing or altering the contents of a memory location. As 4 noun, such an action.

Return: To exit a subrouting and go back 1o the program which called it
ROM: Sec Read-Only Memory.

Run: To follow the sequence of instructions which comprise a program, and to complete the
process outlined by the instructions.

Scan line: A single sweep of a cathode beam across the face of a cathode-ray rube,

Schematic: A diagram which rep the clectrical i i and ci
tronic device.

cuitry of an elec-

Seroll: To move all the text on a display {usually upwards) 1o make room for more (usually at
the bottom),

183

Soft switch: A two-position switch which can be “‘thrown'" cither way by the software of a com-
puter.

Software: The programs which give the hardware something Lo do.

A reserved area in memaory which can be used to store information temporarily. The
ion in a stack is referenced not by address, but in the order in which it was placed on the
stack. The last datum which was “pushed’” onto the stack will be the first one to be *'popped™”
off i

Strobe: A v signal which indi the occurrence of a specific event.

Subroutine: A segment of a program which can be execcuted by a single call Subroutines are
wsed to perform the same sequence of instructions al many dilferent places in one program,

Syntax: The structure of instructions in a given lenguage. 1 you make a mistake in entering an
instruction and garble the syntax, the computer sometimes calls this a “SYNTAX ERROR."

Text: Characters, usually letters and numbers. *Text” usually refers to large chunks of English,
rather than computer, language.

Togele switch: A two-positi
back again, and cannot be

n swilch which can only flip from one position 1o the other and
rectly set cither way.

Trace: An etched conductive path on a Primeed-Cirenir Board which serves io electronically con-
nect components,

Video: 1) Anything visual, 2} Information presented on the face of a carbode-ray nibe,

Warm-start: To restart the operation of a computer after you have lost control of it
operaling system.

language or

Window: Something out of which you jump when the power fails and you lose a large program.
Really: a reserved area on a display which is dedicated 1o some special purpose.

184

BIBLIOGRAPHY

Here are some other publications which you might enjoy:

5 MOS T logy 6500 F Manual

This manual is an i ion to machine ing for the MCB5@2 microproces-
sor. It describes the machine lanuage operation of the Apple’s microprocessor in meticulous
detail. However, it contains no specific information about the Apple,

This book is available from Apple. Order part number AZLODD3

Synertek /MOS Technology 6500 Hardware Manual
This manual contains a detailed description of the internal operations of the Apple's 6582
microprocessor, 1t also has much information regarding interfacing the microprocessor to exter-
nal devices, some of which is pertinent 10 the Apple.

This book is also available from Apple. Order parl number A2L0002.

The Apple 11 Monitor Peeled
This book contains a thorough, well-done description of the operating subroutines within the
Apple’s original Monitor ROM.

This is available from the author:

William E. Dougherty
14349 San Jose Street
Los Angeles, CA 91345

Programming the 6582
This book, written by Rodnay Zaks, is an excellent tutorial manual on machine and assembly-
language programming for the Apple’s 6582 microprocessor.

This manual is available from Sybex | , 2020 Milvia, Berkeley, CA 94704, It should
also be available at your local computer retailer or bookstore. Order book number C202.

6582 Applications
This book. also writlen by Rodnay Zaks, describes many applications of the Apple’s 6582
MICTOPrOCEssor.

This is also available from Sybex. Order book number D302,
System Description: The Apple 11
Wrillen by Steve Wozniak, the designer of the Apple computers, this article describes the basic

construction and operation of the Apple 11,

This article was originally published in the May, 1977 issuc of BYTE magazine, and is available
from BYTE Publications, Inc, Peterborough, NH 30458,

186

SWEET16: The 6582 Dream Machine
Also written by Steve Wozniak, this article describes the SWEET16% interpretive machine
language enclosed in the Apple’s Integer BASIC ROMs.

This article appeared in the October, 1977 issue of BYTE magazine, and is available from BYTE
Publications, Inc. Peterborough, NH 30458,

More Calors for your Apple

This article, written by Allen Watson 111, describes in detail the Apple High-Resolution Graphics
mode. Also included is a reply by Steve Wozniak, the designer of the Apple, describing a
modification you can make 1o update your Revision @ Apple to add the two exira colors available
on the Revision 1 board.

This article appeared in the June, 1979 issue of BYTE magazine, amd is available from BYTE
Publications, Inc. Peterborough, NH 30458,

APPLE (Apple Puget Sound Program Library Exchange)
is one of the largest Apple user group newslellers. For information, write:

Apple Puget Sound Program Library Exchange
6708 39th Ave. Southwest
Seatte, Wash,, 98136

The Cider Press
This is another large ¢lub newsletter, For information, wril
The Cider Press
cfo The Apple Core of San Francisco
Box 4816
San Francisco, CA 94101

187

190

195
195
195

GENERAL INDEX
INDEX OF FIGURES
INDEX OF PHOTOS
INDEX OF TABLES
CAST OF CHARACTERS

189

GENERAL INDEX

@ buards, Revision.
1 buoard, Revision
2716 1ype PROMS
50Hz modification,

6502 microprocessol

—A -

Access Memory (RAM), Random........
address and data buses

88, 90

buses, address and data.
byle, power-up...

&8, 90
37, 65

S

card, Apple Language.....
card, Apple Firmware
cassette interfuce jack
cassette inferfuce
casselle lape, saving to..,
casselle lape, reading from

address multipl

and data
g mode

analog inpuls .
annuncialorn oulputs
annunciator special locat
Apple Firmware card .
Apple Language card .
Apple main board, the
Apple Mini bl
Apple, photo of the
Apple power supply, the
Apple, setting up the.
Apples, varieties of.
ASCII character code.
ASCIT codes, keys and
Autostart ROM listing

characler, RETL
churacly
characters, prom,
ch A
characters, control ...
clearing the keyboard strobe.

loops, Monitor ...

Autostart ROM Reset.
Autostart ROM special locations
Autostart ROM
auxiliary video ¢

commands, creating your own
commands, summary of Mon
wmpunng memaory .,

ion block]!Inon

blocks, RAM

- B mnhgumnon RAM memury
@ pinout, periph
backspace ch « keyhoard
KEY oo . power
BASIC, entering . speaker

BASIC, reentering...
bell character .

connector, Game 1/0
. auxiliary video .

block pinout,
blocks, RAM configuration .
haoard 170, peripheral
baoard, Revision #.
board, Revision 1.
hoard, the Apple main
hourd schematic, main
bufler, picture.
buffer, input
built-in 1/0).

L video
connectors, peripheral
connneclor pinouts, keyboard
control characters
control values, Normal/lnver:
Controllers, Game ,
COUT, KEYIN 5 .
COUT standard outpul subroutine .
crealing your own commands ..
CSW/KSW switches

CUrsOr, oulpul.
cycle, the RESET .

0 | 10

dala buses, address and ...
uta,

display special locations, video .
display, video............

e K

editing an input line
editing features
entering BASIC .
entering the Monitor
entry vector, soft

High-Res graphics
High-Res screen, the ..
High-Res video mode, th
High-Res colors

input buffer :
nput line, editing an ..,

input lines, (Jl:.TLN and..
nput
input . RDKEY
input/output features..,
input/outputl special locations
input/output
inputs, data
inputs, one-bit (*flag™)

High-Res colors
EXUMIning memaory
expansion ROM..._.

s

feature, the Stop-List

instructions, Mi
imerface jucks, cussette.
interface, cusselle .
imternal registers, 6502,

170 connector, CGam
140 i

features, input/outpul ... 170 special locations .
features, editing 1403, buil
features, keyvboard ... 170, peripheral board 19
features, mi 140, peripheral slot 79
featlures, power supply
Firmware card, Apple N
i*“Mag™) inputs, one-hi
format, Text screen . Jjacks, cassette interface. ..o, 22, 103
format, Low-Res screen ... Jacks, video output
formal, High-Res screen jumper, “USER 17
from cassetie tape, reading...
ik
==l -
key, InlLkiMn.
Game C il kcy lel}'pe T
Game 1/0 vh ch AFACIErs

. the video
GETLN and input lines..............
graphics modes

keyboarrt CONNNEeclon pinouls, :
yhoard l'ealure-s 5

graphics, High-Res
graphics, Low-Res ...

hexadecimal notation......

kcybourd special locations

keyboard strobe..

ke'_vbuun:l strobe, clcurlng the
. review of the

. reading the

High-Res eolors, European

191

KEYIN switches, COUT,

keys and ASCI codes.......ooevecnisnninssnsens T
oy e,

Language card, Apple.......
lcaving the Mini- Assembler ..
e, editing an input
ne-feed character .

listing machine language programs...
list of special locations
Iocations, i
locations,
I(a.zlmns, video display special
. inpul/output speci.
. lext window special .
locations, Aulostart ROM special
locations, Monitor special
. keyboard special
L 10 special ..
lesops, Monitor command
Low-Res colors.......
Low-Res sereen, the
Low-Res video mode, th

lukewarm start....... 6
M -
maching | . listing 49

main hoard, the Auple
main board schemati
map, syslem memory
MAps, Le00 page memaory

mode, the Low-Res video ..
made, the High-Res video .
mode, inverse lext.
mode, normal text
modes, addressing .
modes, graphi
maddification, Eurapple S0H

Monitor ROM RESE
Momitor ROM listing.
Monitor ROM
Monitor special lnuunm: 2
Monitor some uﬁ;ful 6l
Monitor, entering the
MOVIng MEmMory ...
multiplexer, RAM address .

normal text mode ...
Normalflnberse uonlml value
notation, i

number, random.....

i)

one {system stack), page.
one-bil (“Mag"") input:
OUIpUL CUrsoT ...
oulpul jacks, video .
oulpul subroutine, COUT standard .
oulpul, utility strob
oulpuls, annunciato
oulpuls, strobe.
oW ¢

Memory {RAM), Random Access. 3
Memory {(ROM), Rl:a:l—()nl)' k]
memory config , RAM 10
Memory map, system 68

Memory maps, 2600 page
memory page:

memory, ini
memory,
memory,
memory,
memory,

- P

memaory,
microprocessor feature h
Eﬁﬂ'l % ipheral slot 1/0 79
heral slot RAM 82
hler prompt (1) heral slot ROM B0

i-A bler, Apple
Mini- Assembler, leaving the
mode, the text video

photo of the Apple .
picture buffer ..
pinoul, peripk

I connector. 106

pinout,

pinouts,
POWET CONNECLOr .
power supply featur
power supply schematic
power supply, the Apple

ROM, Autostart
ROM, Monitor .
ROM, peripheral slot .
ROM or PROM, expansion
running machine language programs

=R

SAVING [0 CASSEIle aPe ..o
schematic, keyboard ..
schematic, power supply

POWET-Up Ivyh:.. 37,65

80
programs, running maching Ianguuge 48
programs, listing machine language 48

programs, debugging ...
PROM, peripheral card
PROM, expansion ROM or
PROMSs, 2716 type ..
prompt (), Monitor .

prompt (1), Mini- Assembler. .50
prompling ch 33

g, input 2
pushb inputs, singl T8
R -

RAM address multiplexer .
RAM confy ion blocks.
RAM memory configuration .
RAM memaory .
RAM pinout . ;
RAM, peripheral slot..
random access memory (RAMD
random number ..
RDKEY standard input s ubmu ne
reading from cassetie tape .
reading the keyboard ..
read-only memory (ROM)
reentering BASIC .
registers, 6582 internal
relationships, timing signals and
RESET cycle, the ..
RESET, Autostart ROM.
RESET, Monitor ROM
return character ...
retype key
rcvn:w of the kcyboal:l

CAppendix C
JAppendix C

ROM pinout ...

main board.,
screen format

sereen format, Text ..
sereen format, High-Res ..
sereen formal, Low-Res
screen pages
sereen soft switches
sereen, the text....
sereen, the Low-Res.
screen, the High-Res
sel, 6382 i i
selling up the Apple
signals and relationships, liming

single-bat ht inpuls &
slot 1/, it 79
slot RAM, peripheral 42
slot ROM, peript 80

soft entry vector
soft switches
soft switches, screen

ons, Autostart ROM .,
special locations, Monitor...
special locations, keyboard
special locations, 1/0 ..
stack), page one (sysiem
stundard input subrouting, RDKEY
stundard outpul subreutine, COUT .
start, cold
start, luk
start, warm
STEP and TRACE..._....
Stop-List feature, the
strobe output, utility
strobe output:
strobe, clearing the keyboard ...

ROM RESET, 16 COUT standard outpul
ROM RESET, MOnitor.........coccvmerrisssserens 38 suhmullnc RDKEY standard input
ROM special locati 7 some uscful Monitor.

193

170 pr
summary of Monitor commands
supply featlures, power.
supply schematic, power.
supply, the Apple power
swilches, solt
switches, screen sofl.

swuchl:-. (SW!K'GW
SYSICM MEMOTY MAP.......oces
{system stack), page ong
sysiem timing ... o

oo

tape, saving 1o cassetie ..
tape, reading from casseile
1ext mode, inverse

text video mode, the
texl window special location
text window, the...
timing signals and relationships
timing, system .
toggle switche:
TRACE, STEP and

U e

SUSER 177 jumper....
uselul Monitor subroutin
strobe output

.

values, NormalfInverse control
varielies of Apple

Sp
viden gencrator, the
video mode, the text
video modde, the Low-Res
video mode, the High-Res
video oulpul jacks.

W

warm starl...

window special locations, text

194

window, the texi...

S
your own commands, creating..................... - 57
[A

7210 age MEmory maps
zero, puge

INDEX OF FIGURES

Map of the Text screen......
Map of the Low-Res mode

Map of the High-Res screen
Cursor-moving escape code:
System Memaory Map
Memaory Configurations .

Configuration Block Pinouts .
Expansion ROM Enable circu
SCFXX decoding ...
The Apple Main Board...
Timing Signals...

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure §.
Figure fi.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11,
Figure 12,
Figure 13,
Figure 14,
Figure 15,
Figure 16,
Figure 17.
Figure 18,
Figure 19.
Figure 2.
Figure 21.
Figure 22.

Auxiliary Video Connector .
Game 1/0 Connector Pinout

Keyboard Schematic Drawing . II.'iI
Keyboard connector Pinout.

INDEX OF PHOTOS

Photo 1. The Apple 11
Phota 2, The Apple Power Supply .
Photo 3, The Apple Keyboard,
Photo 4. The Video Connector:
Photo 5. ipple jumper pads
Photo 6. The Apple Characier Sel..
Photo 7. The Game 1/0 Connector
Photo 8. The USER 1 Jumper...

INDEX OF TABLES

Table 1. Keyboard Special Location:
Table 2. Keys and their ASCH code:
Table 3. The ASCII Character Set..
Table 4. Video Display Memory Rungcs
Table 5. Screen Soft Switches........
Table 6. Screen Mode Combinations.
. ASCIl Screen Character Set
. Low-Resolution Colors
. Annunciator Special Lo
~ Input/Output Special
. Text Window Special Locations
- Normalflnverse Control Values.
. Autostart ROM Special Locatiol
. Page ¢ Monitor Locations .
E - Mini-Assembler Address Formals
Table 16. RAM Org: on and Usage
Table 17. ROM Organization and Usage
Table 18. itor Zero Page Usage .
Table 19, Applesoft 1 Zero Page Usage
Table 20. 1405 3.2 Zero Page Usage.
Table 21. Integer BASIC Zero Page Usage .
Table 22. Built-In 1/O Locations
Table 23. Peripheral Card 1/0 Locations. ...
Table 24, Peripheral Card PROM Locations.
Table 25. 170 Location Base Addresses.
Table 26. 170 Scratchpad RAM Addresses
Signal Desrnpll.ns
Table 27.
Table 28.
Table 29.
Table 30, Keyboard Connector
Table 31. Power Connector
Table 32. Speaker Connector ...
Tahle 33. Peripheral Connector

195

CAST OF
CHARACTERS

: {eolon)

- Aperiod)
<
-1

25, 35,
25,
25,

ELEHNREI IR COTMCNE >

CTRL G (bell}
CTRL H (—)..
CTRL I (line feed)

196

w.apple computer Inc.
. 10240 Bandley Drive
Cupertino, California 95014

030-0004-C

	a2r000.jpg
	a2r001.jpg
	a2r002.jpg
	a2r003.jpg
	a2r004.jpg
	a2r005.jpg
	a2r006.jpg
	a2r007.jpg
	a2r008.jpg
	a2r009.jpg
	a2r010.jpg
	a2r011.jpg
	a2r012.jpg
	a2r013.jpg
	a2r014.jpg
	a2r015.jpg
	a2r016.jpg
	a2r017.jpg
	a2r018.jpg
	a2r019.jpg
	a2r020.jpg
	a2r021.jpg
	a2r022.jpg
	a2r023.jpg
	a2r024.jpg
	a2r025.jpg
	a2r026.jpg
	a2r027.jpg
	a2r028.jpg
	a2r029.jpg
	a2r030.jpg
	a2r031.jpg
	a2r032.jpg
	a2r033.jpg
	a2r034.jpg
	a2r035.jpg
	a2r036.jpg
	a2r037.jpg
	a2r038.jpg
	a2r039.jpg
	a2r040.jpg
	a2r041.jpg
	a2r042.jpg
	a2r043.jpg
	a2r044.jpg
	a2r045.jpg
	a2r046.jpg
	a2r047.jpg
	a2r048.jpg
	a2r049.jpg
	a2r050.jpg
	a2r051.jpg
	a2r052.jpg
	a2r053.jpg
	a2r054.jpg
	a2r055.jpg
	a2r056.jpg
	a2r057.jpg
	a2r058.jpg
	a2r059.jpg
	a2r060.jpg
	a2r061.jpg
	a2r062.jpg
	a2r063.jpg
	a2r064.jpg
	a2r065.jpg
	a2r066.jpg
	a2r067.jpg
	a2r068.jpg
	a2r069.jpg
	a2r070.jpg
	a2r071.jpg
	a2r072.jpg
	a2r073.jpg
	a2r074.jpg
	a2r075.jpg
	a2r076.jpg
	a2r077.jpg
	a2r078.jpg
	a2r079.jpg
	a2r080.jpg
	a2r081.jpg
	a2r082.jpg
	a2r083.jpg
	a2r084.jpg
	a2r085.jpg
	a2r086.jpg
	a2r087.jpg
	a2r088.jpg
	a2r089.jpg
	a2r090.jpg
	a2r091.jpg
	a2r092.jpg
	a2r093.jpg
	a2r094.jpg
	a2r095.jpg
	a2r096.jpg
	a2r097.jpg
	a2r098.jpg
	a2r099.jpg
	a2r100.jpg
	a2r101.jpg
	a2r102.jpg
	a2r103.jpg
	a2r104.jpg
	a2r105.jpg
	a2r106.jpg
	a2r107.jpg
	a2r108.jpg
	a2r109.jpg
	a2r110.jpg
	a2r111.jpg
	a2r112.jpg
	a2r113.jpg
	a2r114.jpg
	a2r115.jpg
	a2r116.jpg
	a2r117.jpg
	a2r118.jpg
	a2r119.jpg
	a2r120.jpg
	a2r121.jpg
	a2r122.jpg
	a2r123.jpg
	a2r124.jpg
	a2r125.jpg
	a2r126.jpg
	a2r127.jpg
	a2r128.jpg
	a2r129.jpg
	a2r130.jpg
	a2r131.jpg
	a2r132.jpg
	a2r133.jpg
	a2r134.jpg
	a2r135.jpg
	a2r136.jpg
	a2r137.jpg
	a2r138.jpg
	a2r139.jpg
	a2r140.jpg
	a2r141.jpg
	a2r142.jpg
	a2r143.jpg
	a2r144.jpg
	a2r145.jpg
	a2r146.jpg
	a2r147.jpg
	a2r148.jpg
	a2r149.jpg
	a2r150.jpg
	a2r151.jpg
	a2r152.jpg
	a2r153.jpg
	a2r154.jpg
	a2r155.jpg
	a2r156.jpg
	a2r157.jpg
	a2r158.jpg
	a2r159.jpg
	a2r160.jpg
	a2r161.jpg
	a2r162.jpg
	a2r163.jpg
	a2r164.jpg
	a2r165.jpg
	a2r166.jpg
	a2r167.jpg
	a2r168.jpg
	a2r169.jpg
	a2r170.jpg
	a2r171.jpg
	a2r172.jpg
	a2r173.jpg
	a2r174.jpg
	a2r175.jpg
	a2r176.jpg
	a2r177.jpg
	a2r178.jpg
	a2r179.jpg
	a2r180.jpg
	a2r181.jpg
	a2r182.jpg
	a2r183.jpg
	a2r184.jpg
	a2r185.jpg
	a2r186.jpg
	a2r187.jpg
	a2r188.jpg
	a2r189.jpg
	a2r190.jpg
	a2r191.jpg
	a2r192.jpg
	a2r193.jpg
	a2r194.jpg
	a2r195.jpg
	a2r196.jpg
	a2r197.jpg
	a2r198.jpg
	a2r199.jpg
	a2r200.jpg
	a2r201.jpg
	a2r202.jpg
	a2r203.jpg
	a2r204.jpg
	a2r205.jpg
	a2r206.jpg
	a2r207.jpg
	a2r208.jpg

