
 ____________________ Apple II Computer Information ____________________

Apple][Computer System Description • Steve Wozniak • BYTE Magazine • May 1977
http://www.oldcomputers.net/index.html • 28 October 2004 • Page 1 of 16

Steve Wozniak • BYTE Magazine • May 1977

http://www.oldcomputers.net/index.html
28 October 2004

__

System Description: The Apple-II

Stephen Wozniak
Apple Computer Co • 20863 Stevens Creek Blvd B3-C • Cupertino CA 95014

__

 ____________________ Apple II Computer Information ____________________

Apple][Computer System Description • Steve Wozniak • BYTE Magazine • May 1977
http://www.oldcomputers.net/index.html • 28 October 2004 • Page 2 of 16

Photo 1: A color test chart showing the 15 shades of hue available from the
Apple-II as presented on a typical commercial color set, using one of several RF
modulators available on the market. The Apple BASIC program used to generate
this color is shown in the text portion of this split screen (graphics and text)
display.

Introduction

To me, a personal computer should be small, reliable, convenient to use and
inexpensive.

The Apple-I, my first video oriented single board computer, was designed late in
1975 and sold by word of mouth through-out California and later nationwide
through retail computer stores. I think that the Apple-I computer was the first
microprocessor system product on the market to completely integrate the display
generation circuitry, microprocessor, memory and power supply on the same board.
This meant that its owner could run the Apple BASIC interpreter with no
additional electronics other than a keyboard and video monitor. The Apple-I
video computer board was originally intended as a television terminal product
which could also operate in a stand alone mode without much in the way of
memory, although it did have a processor, space for 8 K bytes of 4 K dynamic

 ____________________ Apple II Computer Information ____________________

Apple][Computer System Description • Steve Wozniak • BYTE Magazine • May 1977
http://www.oldcomputers.net/index.html • 28 October 2004 • Page 3 of 16

memory chips, and its shared video generation and dynamic memory refresh logic.
Apple-I was sold as a completely assembled and tested processor board with a
price under $700 at the retail level.

The latest result of my design activities is the Apple-II which is the main
subject of this system description article. The Apple-II builds upon this idea
by providing a computer with more memory capability, a read only memory (ROM)
BASIC interpreter, color video graphics as well as point graphics and character
graphics, and extended systems software.

Integral Graphics

A key part of the Apple-II design is an integral video display generator which
directly accesses the system's programmable memory. Screen formatting and cursor
controls are realized in my design in the form of about 200 bytes of read only
memory which are built into the Apple-II's mask programmed 8 K bytes of read
only memory. A 1 K byte segment of the processor's main memory is dedicated to
the display generator, although it is also accessible to programs. The display
transfer rate is the time it takes to fully define the contents of this segment
of memory, and averages about 1000 characters per second, limited primarily by
the software scrolling routines in the system read only memory. Since the Apple-
II incorporates this display generator as a part of its design, its text mode
becomes the terminal for the system. The display has 24 rows of 40 characters
displayed on an ordinary black and white or color television screen. Each
character in the Apple-I I design is a 5 by 7 dot matrix, so the present version
of the system only implements upper case characters of the 6 bit ASCII subset,
as well as the usual numbers and graphics available in standard character
generator read only memory parts.

Figure 1: A block diagram of the Apple-II display generator. The generator
sneaks into memory on the externally unused phase of the 6502 processor's 2
phase clock. The output of the memory is processed (after a 1 clock cycle delay)

 ____________________ Apple II Computer Information ____________________

Apple][Computer System Description • Steve Wozniak • BYTE Magazine • May 1977
http://www.oldcomputers.net/index.html • 28 October 2004 • Page 4 of 16

to produce a net video output through a software controlled video multiplexer.
The three major modes of operation are:

Color graphics, in which each 4 bit nyble of the byte is treated as a color
definition code by the color generator.

Character generation in which the 8 bit code is processed with a read only
memory to generate a dot matrix pattern which is serialized and sent to the
video multiplexer.

Black-white point graphics in which the 8 bit word from memory is used to
control the contents of a segment of a 280 by 160 point grid.

The timing diagram shows how the basic 1 us processor cycle period is split up
into a video memory cycle and a microprocessor memory cycle. Since the processor
is engaged in internal housekeeping operations during the first (high level)
half of a 01 period, this segment of time can be used by the video generator to
sneak into memory. Since all of memory is continuously being scanned by the low
order bits out of video generator, the entire 48 K byte field (maximum) of
dynamic memory is refreshed by the video portion of the cycle. (Refreshing of
dynamic memory means scanning through all possible low order addresses to
recharge the internal memory capacitors of the chips.)

Photo 2: This series of photos shows the steps in writing an animated BASIC game
using the Apple-II computer's BASIC interpreter. This sequence highlights the
process of writing a paddle versus "wall" game where the object of play is to
knock bricks out of the wall and eventually get the ball to go all the way
through. This game is similar to many seen in amusement parks and arcades, and
is typical of the kind of game which can be implemented with Apple-II's BASIC
software. Using the split screen graphics and text display mode, the BASIC
statements are shown at the bottom of each picture.

Photo 2a: The first step in any game is to generate the uniform color background
for the action of the game. Here we use a blue field.

 ____________________ Apple II Computer Information ____________________

Apple][Computer System Description • Steve Wozniak • BYTE Magazine • May 1977
http://www.oldcomputers.net/index.html • 28 October 2004 • Page 5 of 16

Photo 2c: Next, we must of course add a paddle, here created with a deeper
yellowish orange (color 9) hue.

Photo 2d: Then, since no video court game is complete without a ball we must add
a square "ball" to the program, and set up some of the parameters of its motion.

Assuming that the video display is the currently assigned system output device,
the display is accessed through our system software in read only memory by using
a subroutine called COUT which adds text to the screen using an automatic
scrolling technique. This is typical of the many read only memory routines which
I've incorporated into the ROM to provide complex features with relatively
simple user interfaces. Another example of such a software feature is a user
definable scrolling window. This means that the user of the system can pick any
of four coordinates defining any rectangular subset of the viewing area of the

 ____________________ Apple II Computer Information ____________________

Apple][Computer System Description • Steve Wozniak • BYTE Magazine • May 1977
http://www.oldcomputers.net/index.html • 28 October 2004 • Page 6 of 16

video screen as the current scrolling zone. The remainder of the display will
remain frozen and data in the window will scroll normally when COUT is accessed.
This is a most useful feature: For example, the user can set up a game
background or instruction menu in one part of the screen while using the
remainder of the screen for scrolling the variable data.

In the text mode, each character position may be displayed in normal (white
character on black background) or inverse, or flashing modes. This information
is specified by the high order bits of each character stored in the display
memory, The cursor position, for example, is indicated by forcing the character
at the cursor location to be in the flashing mode with inverse video.

User application programs may switch the display mode from character to color
graphics with a single instruction, dividing the screen instantly into a
patchwork of controllable color on a grid of 40 horizontal locations by 48
vertical locations. Each cell in the grid may be one of 15 colors, and software
built into the system read only memory can be used to define the color of any
point as set by X and Y coordinate integer values. Photo 1 shows a color scale
for the 15 colors possible, and a simple BASIC program which generated the
display. Here the scrolling window features are used to set the color graphics
mode in the fixed portion of the screen (above) and set the text mode of
operation in the scrolling portion (below). This mixed mode provides a 40 by 40
color graphics grid plus four lines of scrolling text at the bottom of the
screen. A routine in the system read only memory selects this mode and sets up
the scrolling window corresponding to the text portion. I've found this mode
especially useful to BASIC programmers who can write animation games like Pong
while holding a traditional BASIC conversation in the text region of the screen.
This split screen mode of viewing is used for all the color graphics of photo 2
as well.

The same display memory region that is used for the text display is used for the
color graphics. System software routines supplied in the read only memory of the
processor allow users to simply clear the display, select colors, plot points,
draw horizontal and vertical lines, and sense the color values presently at
specified screen positions. I like to think of these system software subroutines
as enhancements to the 6502 instruction set for the purposes of display control.
High resolution graphics is the remaining Apple-II display mode. This mode of
display is set up by system software routines which are delivered with the
computer, but are not built into the system read only memory. (Even with 8 IC
bytes for the read only memory space, there sometimes isn't enough room to fit
all the needed features.) In the high resolution mode, 8 K bytes of main memory
store the data for a display of 180 horizontal dot positions by 192 vertical dot
positions; so to allow enough room for some BASIC software to play games with
this mode the system requires at least 12 K of memory. If a color television is
used with this high resolution mode, the available colors are black, white,
violet and green. A mixed mode with 160 rows of 280 dots plus four lines of
scrolling text can also be set up. Applications of the high resolution graphics
modes include game boards, mazes, maps, plots and histograms, user definable
character sets, and games like Space War in its original animation graphics
versions.

 ____________________ Apple II Computer Information ____________________

Apple][Computer System Description • Steve Wozniak • BYTE Magazine • May 1977
http://www.oldcomputers.net/index.html • 28 October 2004 • Page 7 of 16

Some Details

All the Apple-II video modes work identically, using a common clock timing chain
which is shared by the processor, memory refresh and video generation logic.
During each microprocessor clock cycle's 01 clock pulse, an address is specified
by the video circuits and directed to the programmable memory of the system
through the address multiplexor (MUX) of figure 1. Display data is received by
the three forms of video data generators toward the end of the 02 pulse, and
this data is then latched for use during the entire next clock cycle. Since all
this action occurs during the 01 pulse which lasts 500 ns, the video generator
is able to take over the access to the memory at a time then the 6502 processor
is busy with internal housekeeping and processing operations which leave the
data bus free. During the 02 pulse, when the processor takes command of the bus,
the programmable memory of the system is used by the executing program as if the
video generator didn't exist at all. Because the integrated display design uses
this direct memory access technique without stealing processor cycles, it is
possible to program accurate and predictable timing loops in software as if no
DMA were present in the system.

Memory

It is alleged in the Santa Clara (Silicon) Valley that the microprocessor was
invented to sell programmable and read only memory chips. It certainly has been
the case that one microprocessor in the past would often support hundreds of
memory chips, but times change. Technology has since bestowed upon us the 4 K
bit and 16 K bit dynamic programmable memory chips. Apple-II was designed to
operate with the 16 pin dynamic programmable memory parts, which come in 4 K and
16 K versions which are (with some subtleties) pin for pin compatible. The
Apple-II board is supplied with sockets for three blocks of memory, each of
which may be configured to use either 4 K or 16 K dynamic programmable memory
parts, with intermixing allowed. This means that if you were to purchase an
Apple with 4 K bytes of memory and later want to add 16 K bytes, there is no
need to scrap the 4 K chips. Dynamic memories have one design characteristic
which is not present in the simpler (but more expensive) static memories. This
is the fact that they use capacitive storage elements built into the chips which
must be periodically recharged ("refreshed") to prevent the information from
disappearing. One of the elegant simplifications provided by a system such as
the Apple-II with its built-in display is the fact that refreshing the entire
memory address space of dynamic memory chips is inherent in the operation of the
video display generator. On successive pulses of the video display, it cycles
through all the low order addresses of the memories as the memory is scanned to
generate the video image. But scanning through the addresses within the maximum
allowable time is the algorithm used to accomplish the required refreshing of
the memories; so with this video generator integral to the computer, refreshing
of the memories happens to come for free and is totally transparent to the user
with no extended, missing or delayed cycles. This characteristic is sometimes
called "hidden refresh."

Photo 3: Two examples of the Apple BASIC interpreter, in the form of programs
with several lines of execution results. (a) The interpreter has a symbolic
trace feature which allows dumping of named variables whenever a change occurs.
This simple program illustrates this "DSP" command with a simple computational
program. (b) A similar debugging feature of Steve Wozniak's Apple BASIC
interpreter is a method of running the interpreter with a statement number

 ____________________ Apple II Computer Information ____________________

Apple][Computer System Description • Steve Wozniak • BYTE Magazine • May 1977
http://www.oldcomputers.net/index.html • 28 October 2004 • Page 8 of 16

trace, by giving a TRACE command instead of RUN in the command mode of the
interpreter. This enables one to fairly quickly debug a BASIC program by
examining its effect on variables or its course of evolution through statement
numbers.

(3a)

(3b)

Photo 4: Far from being limited to interpretive integer BASIC, the Apple-II
includes some powerful debugging and software development aids at the machine
language level. Here at (a) is an example of its dissassembler mode of
operation, invoked by the L command following an address in hexadecimal. A
corresponding nonsymbolic assembler program will perform transformations in the
other direction from text sources. Here at (b) is an example of the instruction
trace command, which allows a machine language program to be followed

 ____________________ Apple II Computer Information ____________________

Apple][Computer System Description • Steve Wozniak • BYTE Magazine • May 1977
http://www.oldcomputers.net/index.html • 28 October 2004 • Page 9 of 16

mnemonically via dynamic disassembly, with register and condition code contents
indicated after each instruction.

(4a)

(4b)

Standard Peripherals

I designed the Apple-II to come with a set of standard peripherals, in order to
fit my concept of a personal computer. In addition to the video display, color
graphics and high resolution graphics, this design includes a keyboard
interface, audio cassette interface, four analog game paddle inputs (for user
supplied potentiometers which vary a resistance which the processor measures),
three switch inputs, four 1 bit annunciator outputs, and even an audio output to
a speaker. Also part of the Apple-II design is an 8 slot motherboard for IO
which has a fully buffered bus, prioritized interrupts, two prioritized direct

 ____________________ Apple II Computer Information ____________________

Apple][Computer System Description • Steve Wozniak • BYTE Magazine • May 1977
http://www.oldcomputers.net/index.html • 28 October 2004 • Page 10 of 16

memory access (DMA) schemes, and address decoding at the individual slots so
that multiple bit address decoders are not required on peripheral boards.

The Apple-II cassette interface is simple, fast, and I think most reliable. The
data transfer rate averages over 180 bytes per second, and the recording scheme
is compatible with the interface used with the Apple-I. This tape recording
method can be used with any inexpensive recorder, but as with any such use of
audio media only high quality tapes should be used in order to avoid problems
due to dropouts from poor oxide coatings on the tapes. In the Apple audio
cassette interface, timing is performed by software which is referenced to the
system clock. A zero bit is defined as a full cycle of a 2000 Hz signal (500 us
long), while a one bit is defined as a full cycle of a 1000 Hz signal (1 ms
long). While reading data, full cycles are sampled, never half cycles, a method
which tends to provide immunity to DC offset and other forms of distortion. All
the cassette management routines are available to user programs as subroutine
calls from assembly language directly, or through hooks in the BASIC
interpreter.

The Apple-II analog game control paddle circuits are based upon inexpensive
timer chips of the 555 type. I've used a quad timer of this type, called the
553, as shown in figure 2. To read the value of resistance on the paddle's
potentiometer, the timer is strobed under software control using routines in the
system read only memory. The input routine then enters a loop which counts the
length of the timer output pulse, which is a function of the paddle
potentiometer's setting. To prevent endless loops if a wire breaks, the paddle
scan routines exit at the maximum count of 255. The resolution of the loop is 12
us per count.

Figure 2: How to make a 1 bit measurement of an analog parameter for games (or
perhaps we should say "2 bit "). Basically, a 555 style timing element is set up
so that it can be triggered by a 1 bit output port. After triggering the
oneshot, the processor enters a timing loop continuously testing the 1 bit input
port until the end of the oneshot's cycle, which is controlled by the game
parameter potentiometer. The result is an integer count developed hy the timing
loop which gives a measure of how long the oneshot pulse lasted, and hence a
measure of the position of the input potentiometer. Apple-II implements four of
these resistance measuring ports (which have plenty of accuracy for game

 ____________________ Apple II Computer Information ____________________

Apple][Computer System Description • Steve Wozniak • BYTE Magazine • May 1977
http://www.oldcomputers.net/index.html • 28 October 2004 • Page 11 of 16

contexts with graphics display feedback but are hardly not to be interpreted as
having any absolute accuracy independent of hand-eye coordination).

One memory address is dedicated to the audio output port which drives a speaker.
When this memory location is referenced from a program, with either a read or a
write operation, the speaker drive line is toggled. Generating tones requires
continuous speaker toggling by this method, at an audible rate. The cassette
output port works in a similar (toggle) fashion to generate audio tones for the
tape. The annunciator outputs each have two corresponding addresses, with one
used to set the output and the second used to clear the outputs. Switch, paddle
and cassette inputs place their data on the system bus in the sign bit position
when their corresponding addresses are referenced; this choice of wiring enables
software to test the state of the bit directly with a conditional branch
instruction of the 6502 processor.

Apple BASIC

Apple-II comes with an Apple BASIC interpreter in the mask programmed read only
memories of the system. There is no need to load it off tape, nor to dedicate
any programmable memory for it. It's always there and it is impossible to
accidentally clobber it. This BASIC is essentially similar to any BASIC with the
exceptions that it only implements 16 bit fixed point arithmetic. It also
features some unique language extensions to take advantage of the Apple-II
hardware features such as color graphics and to provide coveniences in the form
of debugging aids. It is intended primarily for games and educational uses.
A monitor command puts you into BASIC mode, which is indicated on the screen by
a prompt character, " > ". Memory limits for BASIC source programs and data are
set automatically at the time of entry, but these limits may be varied by user
commands. While in BASIC mode, statements are entered on the current system
input device, which is normally the keyboard.

Apple-II BASIC is implemented as a translator-interpreter combination. When a
line is read from the input device, the translator analyzes it and generates a
more efficient internal language facsimile. Syntax errors are detected at this
time. The "nouns" of this internal language are variable names, integer
constants (preconverted to binary for execution speed enhancement), and string
constants. The "verbs" are 1 byte tokens substituted for keywords, operators and
delimiters. Because the translator distinguishes syntax, different verbs are
assigned to different usages of the same symbol, For example, three distinct
verbs represent the word PRINT, depending on whether it is immediately followed
by a string source, an arithmetic expression or nothing. Thus this distinction
need not be made at execution time. For each verb there exists a subroutine to
perform that specific action. Listing a program actually involves decompiling
the internal language back to BASIC source code. Those statements with line
numbers are stored as part of the user program, while those without line numbers
are executed immediately. If desired, the Apple BASIC interpreter's editing
functions can be set to generate line numbers automatically. Although some
commands are valid only for immediate execution and others only for programmed
execution, most can be employed in both ways. In the BASIC source programs,
multiple statements may reside on the same line, separated by colons (':').

BASIC language statements are stored in user memory as they are accepted and
variables are allocated space the first time they are encountered during
immediate or programmed execution. When a program terminates, whether by
completion, interruption or error conditions, all variables are preserved.

 ____________________ Apple II Computer Information ____________________

Apple][Computer System Description • Steve Wozniak • BYTE Magazine • May 1977
http://www.oldcomputers.net/index.html • 28 October 2004 • Page 12 of 16

Programs may be interrupted in execution by typing an ASCII control C; it is
then possible to examine and modify a few variables in immediate mode, then
continue execution at the point of interruption by typing the CONtinue command.
BASIC provides the line number of the statement as the point of interruption
when this sequence is used. The entire variable space is cleared to zero when
BASIC is initialized by the CLR command, and prior to executing the RUN command.
(It is possible to carry variables from one program to another, but to initiate
the second program a GOTO command must be used instead of RUN in order to
override the automatic clear at the beginning of execution of a new program.)
The interpreter consists of a standard expression evaluator and a symbol table
routine for allocating variable storage similar to those described by Prof
Maurer in his 2 part series in the February and March 1976 issues of BYTE. As
statements are scanned, nouns and verbs are encountered. Variable names result
in calls to the symbol table routine which pushes address and length information
on the noun stack (operand stack). Constants are pushed directly onto this
stack. Verbs are pushed onto the verb stack (operator stack) after popping and
executing any verbs of greater priority. A verb is executed by calling its
associated subroutine. Tables define priorities and routine entry addresses for
all verbs. Keywords such as THEN or STEP, and delimiters such as commas and
parentheses, are dealt with just as though they were arithmetic operators. Verb
routines obtain their arguments from the noun stack. Because verbs such as
parentheses tend sometimes to be of low, and other times of high priority, each
verb is actually assigned two priorities (left hand-right hand). One represents
its tendency to force execution of other verbs, the second its tendency to be
executed.

Interactive Monitor

The entry into BASIC, as well as other user oriented features of the Apple-II,
is provided by an interactive keyboard monitor which serves as an aid to writing
and debugging machine language programs for the 6502 processor of the system.
The user enters commands from the keyboard specifying data and address
parameters in hexadecimal. Multiple commands are permitted on the same line and
editing features facilitate error correction. I completely wrote and debugged
Apple BASIC using the monitor as my only software development tool. It was of
course the first hand assembled program I wrote for the system. In addition to
the direct monitor commands, a number of subroutines were included in the Apple-
II's mask programmed system read only memory to provide easy access to hardware
features. These are the service routines which are used by the monitor, as well
as BASIC and any user routines you care to code.

The Story of Sweet Sixteen

The Apple-II monitor read only memory also contains an interpreter program
called SWEET16 which can be used from machine language programs to implement 16
bit arithmetic operations. This facility can prove quite useful, for example, in
calculating addresses, and serves as on extension of the instruction set of the
6502 which is reached by the JSR SWEET16 escape sequence in code.

While writing Apple BASIC, I ran into the problem of manipulating the 16 bit
pointer data and its arithmetic in an 8 bit machine.

My solution to this problem of handling 16 bit data, notably pointers, with an 8
bit microprocessor was to implement a non-existent 16 bit processor in software,
interpreter fashion, which I refer to as SWEET16.

 ____________________ Apple II Computer Information ____________________

Apple][Computer System Description • Steve Wozniak • BYTE Magazine • May 1977
http://www.oldcomputers.net/index.html • 28 October 2004 • Page 13 of 16

SWEET16 contains sixteen internal 16 bit registers, actually the first 32 bytes
in main memory, labelled RO through R15. RO is defined as the accumulator, Rl5
as the program counter, and R14 as a status register. R13 stores the result of
all COMPARE operations for branch testing. The user accesses SWEETl6 with a
subroutine call to hexadecimal address F689. Bytes stored after the subroutine
call are thereafter interpreted and executed by SWEET16. One of SWEET16's
commands returns the user back to 6502 mode, even restoring the original
register contents.

Implemented in only 300 bytes of code, SWEET16 has a very simple instruction set
tailored to operations such as memory moves and stack manipulation. Most op
codes are only one byte long, but since she runs approximately ten times slower
than equivalent 6502 code, SWEET16 should be employed only when code is at a
premium or execution speed is not. As an example of her usefulness, I have
estimated that about l K bytes could be weeded out of my 5 K byte Apple-II BASIC
interpreter with no observable performance degradation by selectively applying
SWEET16.

 ____________________ Apple II Computer Information ____________________

Apple][Computer System Description • Steve Wozniak • BYTE Magazine • May 1977
http://www.oldcomputers.net/index.html • 28 October 2004 • Page 14 of 16

 ____________________ Apple II Computer Information ____________________

Apple][Computer System Description • Steve Wozniak • BYTE Magazine • May 1977
http://www.oldcomputers.net/index.html • 28 October 2004 • Page 15 of 16

Author's Note

So as to not slight their efforts, I would like to thank Allen Baum for
originating the Apple-II debug software, Doug Kraul for helpful suggestions on
the I/O structure, and Randy Wigginton and Chris Espinosa for many long and late
hours testing the Apple BASIC. . . SW

 ____________________ Apple II Computer Information ____________________

Apple][Computer System Description • Steve Wozniak • BYTE Magazine • May 1977
http://www.oldcomputers.net/index.html • 28 October 2004 • Page 16 of 16

###

